MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsc Structured version   Visualization version   GIF version

Theorem matsc 20237
Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
matsc.a 𝐴 = (𝑁 Mat 𝑅)
matsc.k 𝐾 = (Base‘𝑅)
matsc.m · = ( ·𝑠𝐴)
matsc.z 0 = (0g𝑅)
Assertion
Ref Expression
matsc ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
Distinct variable groups:   𝑖,𝑗, 0   𝐴,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   · ,𝑖,𝑗   𝑖,𝐿,𝑗   𝑖,𝐾,𝑗

Proof of Theorem matsc
StepHypRef Expression
1 simp3 1061 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → 𝐿𝐾)
2 3simpa 1056 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3 matsc.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43matring 20230 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
5 eqid 2620 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
6 eqid 2620 . . . . 5 (1r𝐴) = (1r𝐴)
75, 6ringidcl 18549 . . . 4 (𝐴 ∈ Ring → (1r𝐴) ∈ (Base‘𝐴))
82, 4, 73syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (1r𝐴) ∈ (Base‘𝐴))
9 matsc.k . . . 4 𝐾 = (Base‘𝑅)
10 matsc.m . . . 4 · = ( ·𝑠𝐴)
11 eqid 2620 . . . 4 (.r𝑅) = (.r𝑅)
12 eqid 2620 . . . 4 (𝑁 × 𝑁) = (𝑁 × 𝑁)
133, 5, 9, 10, 11, 12matvsca2 20215 . . 3 ((𝐿𝐾 ∧ (1r𝐴) ∈ (Base‘𝐴)) → (𝐿 · (1r𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r𝑅)(1r𝐴)))
141, 8, 13syl2anc 692 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r𝑅)(1r𝐴)))
15 simp1 1059 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → 𝑁 ∈ Fin)
16 simp13 1091 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) ∧ 𝑖𝑁𝑗𝑁) → 𝐿𝐾)
17 fvex 6188 . . . . 5 (1r𝑅) ∈ V
18 matsc.z . . . . . 6 0 = (0g𝑅)
19 fvex 6188 . . . . . 6 (0g𝑅) ∈ V
2018, 19eqeltri 2695 . . . . 5 0 ∈ V
2117, 20ifex 4147 . . . 4 if(𝑖 = 𝑗, (1r𝑅), 0 ) ∈ V
2221a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (1r𝑅), 0 ) ∈ V)
23 fconstmpt2 6740 . . . 4 ((𝑁 × 𝑁) × {𝐿}) = (𝑖𝑁, 𝑗𝑁𝐿)
2423a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → ((𝑁 × 𝑁) × {𝐿}) = (𝑖𝑁, 𝑗𝑁𝐿))
25 eqid 2620 . . . . 5 (1r𝑅) = (1r𝑅)
263, 25, 18mat1 20234 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), 0 )))
27263adant3 1079 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), 0 )))
2815, 15, 16, 22, 24, 27offval22 7238 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r𝑅)(1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 ))))
29 ovif2 6723 . . . 4 (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 )) = if(𝑖 = 𝑗, (𝐿(.r𝑅)(1r𝑅)), (𝐿(.r𝑅) 0 ))
309, 11, 25ringridm 18553 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)(1r𝑅)) = 𝐿)
31303adant1 1077 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)(1r𝑅)) = 𝐿)
329, 11, 18ringrz 18569 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅) 0 ) = 0 )
33323adant1 1077 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅) 0 ) = 0 )
3431, 33ifeq12d 4097 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → if(𝑖 = 𝑗, (𝐿(.r𝑅)(1r𝑅)), (𝐿(.r𝑅) 0 )) = if(𝑖 = 𝑗, 𝐿, 0 ))
3529, 34syl5eq 2666 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 )) = if(𝑖 = 𝑗, 𝐿, 0 ))
3635mpt2eq3dv 6706 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝑖𝑁, 𝑗𝑁 ↦ (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 ))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
3714, 28, 363eqtrd 2658 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  Vcvv 3195  ifcif 4077  {csn 4168   × cxp 5102  cfv 5876  (class class class)co 6635  cmpt2 6637  𝑓 cof 6880  Fincfn 7940  Basecbs 15838  .rcmulr 15923   ·𝑠 cvsca 15926  0gc0g 16081  1rcur 18482  Ringcrg 18528   Mat cmat 20194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-ot 4177  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-fzo 12450  df-seq 12785  df-hash 13101  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-hom 15947  df-cco 15948  df-0g 16083  df-gsum 16084  df-prds 16089  df-pws 16091  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-submnd 17317  df-grp 17406  df-minusg 17407  df-sbg 17408  df-mulg 17522  df-subg 17572  df-ghm 17639  df-cntz 17731  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-subrg 18759  df-lmod 18846  df-lss 18914  df-sra 19153  df-rgmod 19154  df-dsmm 20057  df-frlm 20072  df-mamu 20171  df-mat 20195
This theorem is referenced by:  scmatscm  20300  madurid  20431  chmatval  20615
  Copyright terms: Public domain W3C validator