![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matsca | Structured version Visualization version GIF version |
Description: The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
matbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matbas.g | ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) |
Ref | Expression |
---|---|
matsca | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matbas.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matbas.g | . . . 4 ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) | |
3 | eqid 2651 | . . . 4 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
4 | 1, 2, 3 | matval 20265 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉)) |
5 | 4 | fveq2d 6233 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐴) = (Scalar‘(𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉))) |
6 | scaid 16061 | . . 3 ⊢ Scalar = Slot (Scalar‘ndx) | |
7 | 3re 11132 | . . . . 5 ⊢ 3 ∈ ℝ | |
8 | 3lt5 11239 | . . . . 5 ⊢ 3 < 5 | |
9 | 7, 8 | gtneii 10187 | . . . 4 ⊢ 5 ≠ 3 |
10 | scandx 16060 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
11 | mulrndx 16043 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
12 | 10, 11 | neeq12i 2889 | . . . 4 ⊢ ((Scalar‘ndx) ≠ (.r‘ndx) ↔ 5 ≠ 3) |
13 | 9, 12 | mpbir 221 | . . 3 ⊢ (Scalar‘ndx) ≠ (.r‘ndx) |
14 | 6, 13 | setsnid 15962 | . 2 ⊢ (Scalar‘𝐺) = (Scalar‘(𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉)) |
15 | 5, 14 | syl6reqr 2704 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 〈cop 4216 〈cotp 4218 × cxp 5141 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 3c3 11109 5c5 11111 ndxcnx 15901 sSet csts 15902 .rcmulr 15989 Scalarcsca 15991 freeLMod cfrlm 20138 maMul cmmul 20237 Mat cmat 20261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-ndx 15907 df-slot 15908 df-sets 15911 df-mulr 16002 df-sca 16004 df-mat 20262 |
This theorem is referenced by: matsca2 20274 matlmod 20283 |
Copyright terms: Public domain | W3C validator |