Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsubgcell Structured version   Visualization version   GIF version

Theorem matsubgcell 20288
 Description: Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matsubgcell.s 𝑆 = (-g𝐴)
matsubgcell.m = (-g𝑅)
Assertion
Ref Expression
matsubgcell ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))

Proof of Theorem matsubgcell
StepHypRef Expression
1 matplusgcell.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
31, 2matrcl 20266 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 474 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
54adantr 480 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
653ad2ant2 1103 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
7 simp1 1081 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
8 eqid 2651 . . . . . . . 8 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
91, 8matsubg 20286 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
106, 7, 9syl2anc 694 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g𝐴))
11 matsubgcell.s . . . . . 6 𝑆 = (-g𝐴)
1210, 11syl6reqr 2704 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑆 = (-g‘(𝑅 freeLMod (𝑁 × 𝑁))))
1312oveqd 6707 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌))
14 eqid 2651 . . . . 5 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
15 xpfi 8272 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1615anidms 678 . . . . . . . . 9 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
1716adantr 480 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin)
183, 17syl 17 . . . . . . 7 (𝑋𝐵 → (𝑁 × 𝑁) ∈ Fin)
1918adantr 480 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
20193ad2ant2 1103 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 × 𝑁) ∈ Fin)
212eleq2i 2722 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2221biimpi 206 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
231, 8matbas 20267 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
243, 23syl 17 . . . . . . . 8 (𝑋𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2522, 24eleqtrrd 2733 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
2625adantr 480 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
27263ad2ant2 1103 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
282eleq2i 2722 . . . . . . . . 9 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2928biimpi 206 . . . . . . . 8 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
301, 2matrcl 20266 . . . . . . . . 9 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130, 23syl 17 . . . . . . . 8 (𝑌𝐵 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3229, 31eleqtrrd 2733 . . . . . . 7 (𝑌𝐵𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
3332adantl 481 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
34333ad2ant2 1103 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
35 matsubgcell.m . . . . 5 = (-g𝑅)
36 eqid 2651 . . . . 5 (-g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (-g‘(𝑅 freeLMod (𝑁 × 𝑁)))
378, 14, 7, 20, 27, 34, 35, 36frlmsubgval 20156 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋(-g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋𝑓 𝑌))
3813, 37eqtrd 2685 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋𝑆𝑌) = (𝑋𝑓 𝑌))
3938oveqd 6707 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = (𝐼(𝑋𝑓 𝑌)𝐽))
40 df-ov 6693 . . 3 (𝐼(𝑋𝑓 𝑌)𝐽) = ((𝑋𝑓 𝑌)‘⟨𝐼, 𝐽⟩)
41 opelxpi 5182 . . . . . 6 ((𝐼𝑁𝐽𝑁) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
4241anim2i 592 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
43423adant1 1099 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)))
44 eqid 2651 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
451, 44, 2matbas2i 20276 . . . . . . 7 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
46 elmapfn 7922 . . . . . . 7 (𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
4745, 46syl 17 . . . . . 6 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
4847adantr 480 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑋 Fn (𝑁 × 𝑁))
491, 44, 2matbas2i 20276 . . . . . . 7 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
50 elmapfn 7922 . . . . . . 7 (𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
5149, 50syl 17 . . . . . 6 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
5251adantl 481 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝑌 Fn (𝑁 × 𝑁))
53 inidm 3855 . . . . 5 ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁)
54 df-ov 6693 . . . . . . 7 (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩)
5554eqcomi 2660 . . . . . 6 (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)
5655a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽))
57 df-ov 6693 . . . . . . 7 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
5857eqcomi 2660 . . . . . 6 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
5958a1i 11 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
6048, 52, 19, 19, 53, 56, 59ofval 6948 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋𝑓 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6143, 60syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝑓 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6240, 61syl5eq 2697 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑓 𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
6339, 62eqtrd 2685 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) (𝐼𝑌𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  Vcvv 3231  ⟨cop 4216   × cxp 5141   Fn wfn 5921  ‘cfv 5926  (class class class)co 6690   ∘𝑓 cof 6937   ↑𝑚 cmap 7899  Fincfn 7997  Basecbs 15904  -gcsg 17471  Ringcrg 18593   freeLMod cfrlm 20138   Mat cmat 20261 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mat 20262 This theorem is referenced by:  matinvgcell  20289  dmatsubcl  20352  chmatval  20682  chpmat1dlem  20688  chpdmatlem2  20692  chpdmatlem3  20693
 Copyright terms: Public domain W3C validator