MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mattposvs Structured version   Visualization version   GIF version

Theorem mattposvs 21058
Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
mattposvs.a 𝐴 = (𝑁 Mat 𝑅)
mattposvs.b 𝐵 = (Base‘𝐴)
mattposvs.k 𝐾 = (Base‘𝑅)
mattposvs.v · = ( ·𝑠𝐴)
Assertion
Ref Expression
mattposvs ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌))

Proof of Theorem mattposvs
StepHypRef Expression
1 mattposvs.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 mattposvs.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 21015 . . . . . . . 8 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 497 . . . . . . 7 (𝑌𝐵𝑁 ∈ Fin)
5 sqxpexg 7471 . . . . . . 7 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V)
64, 5syl 17 . . . . . 6 (𝑌𝐵 → (𝑁 × 𝑁) ∈ V)
7 snex 5324 . . . . . 6 {𝑋} ∈ V
8 xpexg 7467 . . . . . 6 (((𝑁 × 𝑁) ∈ V ∧ {𝑋} ∈ V) → ((𝑁 × 𝑁) × {𝑋}) ∈ V)
96, 7, 8sylancl 588 . . . . 5 (𝑌𝐵 → ((𝑁 × 𝑁) × {𝑋}) ∈ V)
10 oftpos 21055 . . . . 5 ((((𝑁 × 𝑁) × {𝑋}) ∈ V ∧ 𝑌𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
119, 10mpancom 686 . . . 4 (𝑌𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
12 tposconst 7924 . . . . 5 tpos ((𝑁 × 𝑁) × {𝑋}) = ((𝑁 × 𝑁) × {𝑋})
1312oveq1i 7160 . . . 4 (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌)
1411, 13syl6eq 2872 . . 3 (𝑌𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
1514adantl 484 . 2 ((𝑋𝐾𝑌𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
16 mattposvs.k . . . 4 𝐾 = (Base‘𝑅)
17 mattposvs.v . . . 4 · = ( ·𝑠𝐴)
18 eqid 2821 . . . 4 (.r𝑅) = (.r𝑅)
19 eqid 2821 . . . 4 (𝑁 × 𝑁) = (𝑁 × 𝑁)
201, 2, 16, 17, 18, 19matvsca2 21031 . . 3 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌))
2120tposeqd 7889 . 2 ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌))
221, 2mattposcl 21056 . . 3 (𝑌𝐵 → tpos 𝑌𝐵)
231, 2, 16, 17, 18, 19matvsca2 21031 . . 3 ((𝑋𝐾 ∧ tpos 𝑌𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
2422, 23sylan2 594 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
2515, 21, 243eqtr4d 2866 1 ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3495  {csn 4561   × cxp 5548  cfv 6350  (class class class)co 7150  f cof 7401  tpos ctpos 7885  Fincfn 8503  Basecbs 16477  .rcmulr 16560   ·𝑠 cvsca 16563   Mat cmat 21010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-prds 16715  df-pws 16717  df-sra 19938  df-rgmod 19939  df-dsmm 20870  df-frlm 20885  df-mat 21011
This theorem is referenced by:  madulid  21248
  Copyright terms: Public domain W3C validator