Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem2 Structured version   Visualization version   GIF version

Theorem matunitlindflem2 34883
Description: One direction of matunitlindf 34884. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))

Proof of Theorem matunitlindflem2
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . . 7 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
2 eqid 2821 . . . . . . 7 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
31, 2matrcl 21015 . . . . . 6 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 497 . . . . 5 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
54ad3antlr 729 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
6 isfld 19505 . . . . . . 7 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
76simplbi 500 . . . . . 6 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
87anim1i 616 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
94ad2antrl 726 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ Fin)
10 simpr 487 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
11 xpfi 8783 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
1211anidms 569 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
13 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
14 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1513, 14frlmfibas 20900 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
1612, 15sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
171, 13matbas 21016 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1817ancoms 461 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1916, 18eqtrd 2856 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2019eleq2d 2898 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
214, 20sylan2 594 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
22 fvex 6677 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) ∈ V
234, 4, 11syl2anc 586 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 × 𝐼) ∈ Fin)
24 elmapg 8413 . . . . . . . . . . . . . . . . . 18 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2522, 23, 24sylancr 589 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2625adantl 484 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2721, 26bitr3d 283 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2810, 27mpbid 234 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
2928adantrr 715 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
30 eldifsn 4712 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
3130biimpri 230 . . . . . . . . . . . . . . 15 ((𝐼 ∈ Fin ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
324, 31sylan 582 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
3332adantl 484 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ (Fin ∖ {∅}))
34 curf 34864 . . . . . . . . . . . . . 14 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3522, 34mp3an3 1446 . . . . . . . . . . . . 13 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3629, 33, 35syl2anc 586 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
379, 36jca 514 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
3837ex 415 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
3938imdistani 571 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4039anassrs 470 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
41 anass 471 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ↔ (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4240, 41sylibr 236 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
43 drngring 19503 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
44 eqid 2821 . . . . . . . . . . . . . 14 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
45 eqid 2821 . . . . . . . . . . . . . 14 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
46 eqid 2821 . . . . . . . . . . . . . 14 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
4744, 45, 46uvcff 20929 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4843, 47sylan 582 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4948ffvelrnda 6845 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
5049ad4ant14 750 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
51 ffn 6508 . . . . . . . . . . . . . . . 16 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → curry 𝑀 Fn 𝐼)
52 fnima 6472 . . . . . . . . . . . . . . . 16 (curry 𝑀 Fn 𝐼 → (curry 𝑀𝐼) = ran curry 𝑀)
5351, 52syl 17 . . . . . . . . . . . . . . 15 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝐼) = ran curry 𝑀)
5453adantl 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (curry 𝑀𝐼) = ran curry 𝑀)
5554fveq2d 6668 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
5655adantr 483 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
57 simplll 773 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝑅 ∈ DivRing)
58 simpllr 774 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
5945frlmlmod 20887 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6043, 59sylan 582 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6160adantr 483 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
62 lindfrn 20959 . . . . . . . . . . . . . . 15 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6361, 62sylan 582 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6445frlmsca 20891 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
65 drngnzr 20029 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
6665adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
6764, 66eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
6860, 67jca 514 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
69 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
7046, 69lindff1 20958 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
71703expa 1114 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
7268, 71sylan 582 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
73 fdm 6516 . . . . . . . . . . . . . . . . . . 19 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → dom curry 𝑀 = 𝐼)
74 f1eq2 6565 . . . . . . . . . . . . . . . . . . . 20 (dom curry 𝑀 = 𝐼 → (curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ↔ curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼))))
7574biimpac 481 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ∧ dom curry 𝑀 = 𝐼) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7672, 73, 75syl2an 597 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7776an32s 650 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
78 f1f1orn 6620 . . . . . . . . . . . . . . . . 17 (curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
7977, 78syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
80 f1oeng 8522 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ curry 𝑀:𝐼1-1-onto→ran curry 𝑀) → 𝐼 ≈ ran curry 𝑀)
8158, 79, 80syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ≈ ran curry 𝑀)
8281ensymd 8554 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀𝐼)
83 lindsenlbs 34881 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ran curry 𝑀𝐼) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
8457, 58, 63, 82, 83syl31anc 1369 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
85 eqid 2821 . . . . . . . . . . . . . 14 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
86 eqid 2821 . . . . . . . . . . . . . 14 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
8746, 85, 86lbssp 19845 . . . . . . . . . . . . 13 (ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8884, 87syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8956, 88eqtrd 2856 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9089adantr 483 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9150, 90eleqtrrd 2916 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)))
92 eqid 2821 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))
93 eqid 2821 . . . . . . . . . . . . 13 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
94 eqid 2821 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
9545, 14frlmfibas 20900 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
9695feq3d 6495 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
9796biimpa 479 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
9859adantr 483 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
99 simplr 767 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → 𝐼 ∈ Fin)
10086, 46, 92, 69, 93, 94, 97, 98, 99elfilspd 20941 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
10145frlmsca 20891 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
102101fveq2d 6668 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘𝑅) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
103102oveq1d 7165 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
104103adantr 483 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
105 elmapi 8422 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑛:𝐼⟶(Base‘𝑅))
106 ffn 6508 . . . . . . . . . . . . . . . . . . . 20 (𝑛:𝐼⟶(Base‘𝑅) → 𝑛 Fn 𝐼)
107106adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑛 Fn 𝐼)
10851ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
109 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
110 inidm 4194 . . . . . . . . . . . . . . . . . . 19 (𝐼𝐼) = 𝐼
111 eqidd 2822 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) = (𝑛𝑘))
112 eqidd 2822 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) = (curry 𝑀𝑘))
113107, 108, 109, 109, 110, 111, 112offval 7410 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))))
114 simp-4r 782 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
115 ffvelrn 6843 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛:𝐼⟶(Base‘𝑅) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
116115adantll 712 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
117 ffvelrn 6843 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
118117ad4ant24 752 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
11995ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
120118, 119eleqtrd 2915 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ (Base‘(𝑅 freeLMod 𝐼)))
121 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
12245, 46, 14, 114, 116, 120, 94, 121frlmvscafval 20904 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)))
123 fvex 6677 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑘) ∈ V
124 fnconstg 6561 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑘) ∈ V → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
125123, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
126 elmapfn 8423 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘) Fn 𝐼)
127117, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
128127ad4ant24 752 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
129123fvconst2 6960 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
130129adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
131 eqidd 2822 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) = ((curry 𝑀𝑘)‘𝑗))
132125, 128, 114, 114, 110, 130, 131offval 7410 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
133122, 132eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
134133mpteq2dva 5153 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
135113, 134eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
136135oveq2d 7166 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
137 eqid 2821 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
138 simplll 773 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
139 simp-5l 783 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
140115ad4ant23 751 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
141 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
142 elmapi 8422 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
143117, 142syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
144143ffvelrnda 6845 . . . . . . . . . . . . . . . . . . . . 21 (((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
145141, 144sylanl1 678 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
14614, 121ringcl 19305 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ (𝑛𝑘) ∈ (Base‘𝑅) ∧ ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅)) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
147139, 140, 145, 146syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
148147fmpttd 6873 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅))
149 elmapg 8413 . . . . . . . . . . . . . . . . . . . . . 22 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15022, 149mpan 688 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
151150adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15295eleq2d 2898 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
153151, 152bitr3d 283 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
154153ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
155148, 154mpbid 234 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
156 mptexg 6978 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
157156ralrimivw 3183 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → ∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
158 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
159158fnmpt 6482 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
160157, 159syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
161 id 22 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
162 fvexd 6679 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
163160, 161, 162fndmfifsupp 8840 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
164163ad3antlr 729 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
16545, 46, 137, 109, 109, 138, 155, 164frlmgsum 20910 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
166136, 165eqtr2d 2857 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
167105, 166sylan2 594 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
168167eqeq2d 2832 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
169104, 168rexeqbidva 3426 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
170100, 169bitr4d 284 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17143, 170sylanl1 678 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
172171ad2antrr 724 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17391, 172mpbid 234 . . . . . . . 8 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
174173ralrimiva 3182 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17542, 174sylan 582 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17610, 21mpbird 259 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
177 elmapfn 8423 . . . . . . . . 9 (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → 𝑀 Fn (𝐼 × 𝐼))
178176, 177syl 17 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 Fn (𝐼 × 𝐼))
1794adantl 484 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝐼 ∈ Fin)
180 an32 644 . . . . . . . . . . . . . . . . . . 19 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
181 df-3an 1085 . . . . . . . . . . . . . . . . . . 19 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
182180, 181bitr4i 280 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ (𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼))
183 curfv 34866 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
184182, 183sylanb 583 . . . . . . . . . . . . . . . . 17 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
185184an32s 650 . . . . . . . . . . . . . . . 16 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
186185oveq2d 7166 . . . . . . . . . . . . . . 15 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) = ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))
187186mpteq2dva 5153 . . . . . . . . . . . . . 14 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
188187an32s 650 . . . . . . . . . . . . 13 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
189188oveq2d 7166 . . . . . . . . . . . 12 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
190189mpteq2dva 5153 . . . . . . . . . . 11 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
191190eqeq2d 2832 . . . . . . . . . 10 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
192191rexbidv 3297 . . . . . . . . 9 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
193192ralbidv 3197 . . . . . . . 8 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
194178, 179, 193syl2anc 586 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
195194ad2antrr 724 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
196175, 195mpbid 234 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
1978, 196sylanl1 678 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
198 fveq1 6663 . . . . . . . . . . 11 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = ((𝑓𝑖)‘𝑘))
199 uncov 34867 . . . . . . . . . . . 12 ((𝑖 ∈ V ∧ 𝑘 ∈ V) → (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘))
200199el2v 3501 . . . . . . . . . . 11 (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘)
201198, 200syl6eqr 2874 . . . . . . . . . 10 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = (𝑖uncurry 𝑓𝑘))
202201oveq1d 7165 . . . . . . . . 9 (𝑛 = (𝑓𝑖) → ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)) = ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))
203202mpteq2dv 5154 . . . . . . . 8 (𝑛 = (𝑓𝑖) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))) = (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))
204203oveq2d 7166 . . . . . . 7 (𝑛 = (𝑓𝑖) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
205204mpteq2dv 5154 . . . . . 6 (𝑛 = (𝑓𝑖) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
206205eqeq2d 2832 . . . . 5 (𝑛 = (𝑓𝑖) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
207206ac6sfi 8756 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
2085, 197, 207syl2anc 586 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
209 uncf 34865 . . . . . . 7 (𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) → uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))
21013, 14frlmfibas 20900 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
21112, 210sylan2 594 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2121, 13matbas 21016 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
213212ancoms 461 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
214211, 213eqtrd 2856 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2154, 214sylan2 594 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
216215eleq2d 2898 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅))))
217 elmapg 8413 . . . . . . . . . . . . . 14 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
21822, 23, 217sylancr 589 . . . . . . . . . . . . 13 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
219218adantl 484 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
220216, 219bitr3d 283 . . . . . . . . . . 11 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
221220biimpar 480 . . . . . . . . . 10 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
222221adantr 483 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
223 nfv 1911 . . . . . . . . . . . . . 14 𝑗(((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼)
224 nfmpt1 5156 . . . . . . . . . . . . . . 15 𝑗(𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
225224nfeq2 2995 . . . . . . . . . . . . . 14 𝑗((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
226 fveq1 6663 . . . . . . . . . . . . . . . . 17 (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
2277, 43syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Field → 𝑅 ∈ Ring)
228227, 4anim12i 614 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
229228adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
230 equcom 2021 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗𝑗 = 𝑖)
231 ifbi 4487 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑗𝑗 = 𝑖) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
232230, 231ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))
233 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (1r𝑅) = (1r𝑅)
234 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑅) = (0g𝑅)
235 simpllr 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
236 simplll 773 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
237 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
238 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
239 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(𝐼 Mat 𝑅)) = (1r‘(𝐼 Mat 𝑅))
2401, 233, 234, 235, 236, 237, 238, 239mat1ov 21051 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
241 df-3an 1085 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼))
24244, 233, 234uvcvval 20924 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
243241, 242sylanbr 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
244232, 240, 2433eqtr4a 2882 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
245229, 244sylanl1 678 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
246 ovex 7183 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V
247 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
248247fvmpt2 6773 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝐼 ∧ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
249246, 248mpan2 689 . . . . . . . . . . . . . . . . . . . 20 (𝑗𝐼 → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
250249adantl 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
251 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)
252 simp-4l 781 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Field)
2534ad4antlr 731 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
254218biimpar 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
255254ad5ant23 758 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
256 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
257256, 215eleqtrrd 2916 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
258257ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
259 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
260 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
261251, 14, 121, 252, 253, 253, 253, 255, 258, 259, 260mamufv 20992 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
2621, 251matmulr 21041 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
263262ancoms 461 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
264263oveqd 7167 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
265264oveqd 7167 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
2664, 265sylan2 594 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
267266ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
268250, 261, 2673eqtr2rd 2863 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
269245, 268eqeq12d 2837 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) ↔ (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗)))
270226, 269syl5ibr 248 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
271270ex 415 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑗𝐼 → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
272271com23 86 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑗𝐼 → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
273223, 225, 272ralrimd 3218 . . . . . . . . . . . . 13 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
274273ralimdva 3177 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
2751, 2, 239mat1bas 21052 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ (Base‘(𝐼 Mat 𝑅)))
27613, 14frlmfibas 20900 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
27712, 276sylan2 594 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2781, 13matbas 21016 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
279278ancoms 461 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
280277, 279eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
281275, 280eleqtrrd 2916 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
282 elmapfn 8423 . . . . . . . . . . . . . . . 16 ((1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
283281, 282syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
284227, 4, 283syl2an 597 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
285284adantr 483 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
2861matring 21046 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼 Mat 𝑅) ∈ Ring)
2874, 227, 286syl2anr 598 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝐼 Mat 𝑅) ∈ Ring)
288287adantr 483 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 Mat 𝑅) ∈ Ring)
289 simplr 767 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
290 eqid 2821 . . . . . . . . . . . . . . . . 17 (.r‘(𝐼 Mat 𝑅)) = (.r‘(𝐼 Mat 𝑅))
2912, 290ringcl 19305 . . . . . . . . . . . . . . . 16 (((𝐼 Mat 𝑅) ∈ Ring ∧ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
292288, 221, 289, 291syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
293215adantr 483 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
294292, 293eleqtrrd 2916 . . . . . . . . . . . . . 14 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
295 elmapfn 8423 . . . . . . . . . . . . . 14 ((uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
296294, 295syl 17 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
297 eqfnov2 7275 . . . . . . . . . . . . 13 (((1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
298285, 296, 297syl2anc 586 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
299274, 298sylibrd 261 . . . . . . . . . . 11 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)))
300299imp 409 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
301300eqcomd 2827 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
302 oveq1 7157 . . . . . . . . . . 11 (𝑛 = uncurry 𝑓 → (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
303302eqeq1d 2823 . . . . . . . . . 10 (𝑛 = uncurry 𝑓 → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) ↔ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
304303rspcev 3622 . . . . . . . . 9 ((uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
305222, 301, 304syl2anc 586 . . . . . . . 8 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
306305expl 460 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
307209, 306sylani 605 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
308307exlimdv 1930 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
309308imp 409 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
310309adantlr 713 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
311208, 310syldan 593 . 2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
3126simprbi 499 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ CRing)
313 eqid 2821 . . . . . . . . . 10 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
314313, 1, 2, 14mdetcl 21199 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
315313, 1, 2, 14mdetcl 21199 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅))
316 eqid 2821 . . . . . . . . . 10 (∥r𝑅) = (∥r𝑅)
31714, 316, 121dvdsrmul 19392 . . . . . . . . 9 ((((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
318314, 315, 317syl2an 597 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
319318anandis 676 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
320319anassrs 470 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
321320adantrr 715 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
322 fveq2 6664 . . . . . . . . 9 ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))))
3231, 2, 313, 121, 290mdetmul 21226 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
3243233expa 1114 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
325324an32s 650 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
326313, 1, 239, 233mdet1 21204 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐼 ∈ Fin) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
3274, 326sylan2 594 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
328327adantr 483 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
329325, 328eqeq12d 2837 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) ↔ (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
330322, 329syl5ib 246 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
331330impr 457 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅))
332331breq2d 5070 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
333 eqid 2821 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
334333, 233, 316crngunit 19406 . . . . . . 7 (𝑅 ∈ CRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
335334ad2antrr 724 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
336332, 335bitr4d 284 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
337321, 336mpbid 234 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
338312, 337sylanl1 678 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
339338ad4ant14 750 . 2 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
340311, 339rexlimddv 3291 1 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  c0 4290  ifcif 4466  {csn 4560  cotp 4568   class class class wbr 5058  cmpt 5138   × cxp 5547  dom cdm 5549  ran crn 5550  cima 5552   Fn wfn 6344  wf 6345  1-1wf1 6346  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  f cof 7401  curry ccur 7925  uncurry cunc 7926  m cmap 8400  cen 8500  Fincfn 8503   finSupp cfsupp 8827  Basecbs 16477  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707   Σg cgsu 16708  1rcur 19245  Ringcrg 19291  CRingccrg 19292  rcdsr 19382  Unitcui 19383  DivRingcdr 19496  Fieldcfield 19497  LModclmod 19628  LSpanclspn 19737  LBasisclbs 19840  NzRingcnzr 20024   freeLMod cfrlm 20884   unitVec cuvc 20920   LIndF clindf 20942  LIndSclinds 20943   maMul cmmul 20988   Mat cmat 21010   maDet cmdat 21187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1501  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-cur 7927  df-unc 7928  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-reverse 14115  df-s2 14204  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-mri 16853  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-gim 18393  df-cntz 18441  df-oppg 18468  df-symg 18490  df-pmtr 18564  df-psgn 18613  df-evpm 18614  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-srg 19250  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-field 19499  df-subrg 19527  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lmhm 19788  df-lbs 19841  df-lvec 19869  df-sra 19938  df-rgmod 19939  df-nzr 20025  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-dsmm 20870  df-frlm 20885  df-uvc 20921  df-lindf 20944  df-linds 20945  df-mamu 20989  df-mat 21011  df-mdet 21188
This theorem is referenced by:  matunitlindf  34884
  Copyright terms: Public domain W3C validator