MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matval Structured version   Visualization version   GIF version

Theorem matval 20419
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matval.a 𝐴 = (𝑁 Mat 𝑅)
matval.g 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
matval.t · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
matval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), · ⟩))

Proof of Theorem matval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matval.a . 2 𝐴 = (𝑁 Mat 𝑅)
2 elex 3352 . . 3 (𝑅𝑉𝑅 ∈ V)
3 id 22 . . . . . . 7 (𝑟 = 𝑅𝑟 = 𝑅)
4 id 22 . . . . . . . 8 (𝑛 = 𝑁𝑛 = 𝑁)
54sqxpeqd 5298 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 × 𝑛) = (𝑁 × 𝑁))
63, 5oveqan12rd 6833 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = (𝑅 freeLMod (𝑁 × 𝑁)))
7 matval.g . . . . . 6 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
86, 7syl6eqr 2812 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = 𝐺)
94, 4, 4oteq123d 4568 . . . . . . . 8 (𝑛 = 𝑁 → ⟨𝑛, 𝑛, 𝑛⟩ = ⟨𝑁, 𝑁, 𝑁⟩)
103, 9oveqan12rd 6833 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
11 matval.t . . . . . . 7 · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
1210, 11syl6eqr 2812 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩) = · )
1312opeq2d 4560 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩ = ⟨(.r‘ndx), · ⟩)
148, 13oveq12d 6831 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
15 df-mat 20416 . . . 4 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
16 ovex 6841 . . . 4 (𝐺 sSet ⟨(.r‘ndx), · ⟩) ∈ V
1714, 15, 16ovmpt2a 6956 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
182, 17sylan2 492 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
191, 18syl5eq 2806 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cop 4327  cotp 4329   × cxp 5264  cfv 6049  (class class class)co 6813  Fincfn 8121  ndxcnx 16056   sSet csts 16057  .rcmulr 16144   freeLMod cfrlm 20292   maMul cmmul 20391   Mat cmat 20415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-ot 4330  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-mat 20416
This theorem is referenced by:  matbas  20421  matplusg  20422  matsca  20423  matvsca  20424  matmulr  20446
  Copyright terms: Public domain W3C validator