MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulsolcl Structured version   Visualization version   GIF version

Theorem mavmulsolcl 20338
Description: Every solution of the equation 𝐴𝑋 = 𝑌 for a matrix 𝐴 and a vector 𝐵 is a vector. (Contributed by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
mavmuldm.b 𝐵 = (Base‘𝑅)
mavmuldm.c 𝐶 = (𝐵𝑚 (𝑀 × 𝑁))
mavmuldm.d 𝐷 = (𝐵𝑚 𝑁)
mavmuldm.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mavmulsolcl.e 𝐸 = (𝐵𝑚 𝑀)
Assertion
Ref Expression
mavmulsolcl (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))

Proof of Theorem mavmulsolcl
StepHypRef Expression
1 2a1 28 . 2 (𝑋𝐷 → (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
2 simpl 473 . . . . . . . . 9 ((𝑅𝑉𝑌𝐸) → 𝑅𝑉)
32adantl 482 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑅𝑉)
4 simpl1 1062 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑀 ∈ Fin)
5 simpl2 1063 . . . . . . . 8 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑁 ∈ Fin)
63, 4, 53jca 1240 . . . . . . 7 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → (𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin))
76adantl 482 . . . . . 6 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin))
8 mavmuldm.b . . . . . . 7 𝐵 = (Base‘𝑅)
9 mavmuldm.c . . . . . . 7 𝐶 = (𝐵𝑚 (𝑀 × 𝑁))
10 mavmuldm.d . . . . . . 7 𝐷 = (𝐵𝑚 𝑁)
11 mavmuldm.t . . . . . . 7 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
128, 9, 10, 11mavmuldm 20337 . . . . . 6 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))
137, 12syl 17 . . . . 5 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → dom · = (𝐶 × 𝐷))
14 simpl 473 . . . . . 6 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ¬ 𝑋𝐷)
1514intnand 961 . . . . 5 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ¬ (𝐴𝐶𝑋𝐷))
16 ndmovg 6802 . . . . 5 ((dom · = (𝐶 × 𝐷) ∧ ¬ (𝐴𝐶𝑋𝐷)) → (𝐴 · 𝑋) = ∅)
1713, 15, 16syl2anc 692 . . . 4 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝐴 · 𝑋) = ∅)
18 eqeq1 2624 . . . . . 6 ((𝐴 · 𝑋) = ∅ → ((𝐴 · 𝑋) = 𝑌 ↔ ∅ = 𝑌))
19 elmapi 7864 . . . . . . . . . . . . . 14 (𝑌 ∈ (𝐵𝑚 𝑀) → 𝑌:𝑀𝐵)
20 f0dom0 6076 . . . . . . . . . . . . . . . . . . . 20 (𝑌:𝑀𝐵 → (𝑀 = ∅ ↔ 𝑌 = ∅))
2120biimprd 238 . . . . . . . . . . . . . . . . . . 19 (𝑌:𝑀𝐵 → (𝑌 = ∅ → 𝑀 = ∅))
2221necon3d 2812 . . . . . . . . . . . . . . . . . 18 (𝑌:𝑀𝐵 → (𝑀 ≠ ∅ → 𝑌 ≠ ∅))
2322com12 32 . . . . . . . . . . . . . . . . 17 (𝑀 ≠ ∅ → (𝑌:𝑀𝐵𝑌 ≠ ∅))
24233ad2ant3 1082 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → (𝑌:𝑀𝐵𝑌 ≠ ∅))
2524com12 32 . . . . . . . . . . . . . . 15 (𝑌:𝑀𝐵 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅))
2625a1d 25 . . . . . . . . . . . . . 14 (𝑌:𝑀𝐵 → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
2719, 26syl 17 . . . . . . . . . . . . 13 (𝑌 ∈ (𝐵𝑚 𝑀) → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
28 mavmulsolcl.e . . . . . . . . . . . . 13 𝐸 = (𝐵𝑚 𝑀)
2927, 28eleq2s 2717 . . . . . . . . . . . 12 (𝑌𝐸 → (𝑅𝑉 → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅)))
3029impcom 446 . . . . . . . . . . 11 ((𝑅𝑉𝑌𝐸) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) → 𝑌 ≠ ∅))
3130impcom 446 . . . . . . . . . 10 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → 𝑌 ≠ ∅)
32 eqneqall 2802 . . . . . . . . . 10 (𝑌 = ∅ → (𝑌 ≠ ∅ → 𝑋𝐷))
3331, 32syl5com 31 . . . . . . . . 9 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → (𝑌 = ∅ → 𝑋𝐷))
3433adantl 482 . . . . . . . 8 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → (𝑌 = ∅ → 𝑋𝐷))
3534com12 32 . . . . . . 7 (𝑌 = ∅ → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷))
3635eqcoms 2628 . . . . . 6 (∅ = 𝑌 → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷))
3718, 36syl6bi 243 . . . . 5 ((𝐴 · 𝑋) = ∅ → ((𝐴 · 𝑋) = 𝑌 → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → 𝑋𝐷)))
3837com23 86 . . . 4 ((𝐴 · 𝑋) = ∅ → ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
3917, 38mpcom 38 . . 3 ((¬ 𝑋𝐷 ∧ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸))) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))
4039ex 450 . 2 𝑋𝐷 → (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷)))
411, 40pm2.61i 176 1 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑀 ≠ ∅) ∧ (𝑅𝑉𝑌𝐸)) → ((𝐴 · 𝑋) = 𝑌𝑋𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  c0 3907  cop 4174   × cxp 5102  dom cdm 5104  wf 5872  cfv 5876  (class class class)co 6635  𝑚 cmap 7842  Fincfn 7940  Basecbs 15838   maVecMul cmvmul 20327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-map 7844  df-mvmul 20328
This theorem is referenced by:  slesolvec  20466  cramerimplem2  20471
  Copyright terms: Public domain W3C validator