MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  max0sub Structured version   Visualization version   GIF version

Theorem max0sub 12065
Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
max0sub (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)

Proof of Theorem max0sub
StepHypRef Expression
1 0red 10079 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 id 22 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 iftrue 4125 . . . . 5 (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
43adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
5 0xr 10124 . . . . . 6 0 ∈ ℝ*
65a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ*)
7 renegcl 10382 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
87adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ)
98rexrd 10127 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ*)
10 le0neg2 10575 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
1110biimpa 500 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0)
12 xrmaxeq 12048 . . . . 5 ((0 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = 0)
136, 9, 11, 12syl3anc 1366 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0)
144, 13oveq12d 6708 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 − 0))
15 recn 10064 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1615adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
1716subid1d 10419 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 − 0) = 𝐴)
1814, 17eqtrd 2685 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
195a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ∈ ℝ*)
20 rexr 10123 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2120adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ*)
22 simpr 476 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
23 xrmaxeq 12048 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0)
2419, 21, 22, 23syl3anc 1366 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0)
25 le0neg1 10574 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
2625biimpa 500 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
2726iftrued 4127 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴)
2824, 27oveq12d 6708 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (0 − -𝐴))
29 df-neg 10307 . . . 4 --𝐴 = (0 − -𝐴)
3015adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
3130negnegd 10421 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → --𝐴 = 𝐴)
3229, 31syl5eqr 2699 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 − -𝐴) = 𝐴)
3328, 32eqtrd 2685 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
341, 2, 18, 33lecasei 10181 1 (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  ifcif 4119   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  *cxr 10111  cle 10113  cmin 10304  -cneg 10305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307
This theorem is referenced by:  mbfi1flimlem  23534  itgitg1  23620  itgconst  23630  itgaddlem2  23635  itgmulc2lem2  23644  itgaddnclem2  33599  itgmulc2nclem2  33607
  Copyright terms: Public domain W3C validator