MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  max0sub Structured version   Visualization version   GIF version

Theorem max0sub 12583
Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
max0sub (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)

Proof of Theorem max0sub
StepHypRef Expression
1 0red 10638 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 id 22 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 iftrue 4472 . . . . 5 (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
43adantl 484 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
5 0xr 10682 . . . . 5 0 ∈ ℝ*
6 renegcl 10943 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
76adantr 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ)
87rexrd 10685 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ*)
9 le0neg2 11143 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
109biimpa 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0)
11 xrmaxeq 12566 . . . . 5 ((0 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = 0)
125, 8, 10, 11mp3an2i 1462 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0)
134, 12oveq12d 7168 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 − 0))
14 recn 10621 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1514adantr 483 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
1615subid1d 10980 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 − 0) = 𝐴)
1713, 16eqtrd 2856 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
18 rexr 10681 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
1918adantr 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ*)
20 simpr 487 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
21 xrmaxeq 12566 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0)
225, 19, 20, 21mp3an2i 1462 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0)
23 le0neg1 11142 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
2423biimpa 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
2524iftrued 4474 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴)
2622, 25oveq12d 7168 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (0 − -𝐴))
27 df-neg 10867 . . . 4 --𝐴 = (0 − -𝐴)
2814adantr 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
2928negnegd 10982 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → --𝐴 = 𝐴)
3027, 29syl5eqr 2870 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 − -𝐴) = 𝐴)
3126, 30eqtrd 2856 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
321, 2, 17, 31lecasei 10740 1 (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  ifcif 4466   class class class wbr 5058  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  *cxr 10668  cle 10670  cmin 10864  -cneg 10865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867
This theorem is referenced by:  mbfi1flimlem  24317  itgitg1  24403  itgconst  24413  itgaddlem2  24418  itgmulc2lem2  24427  itgaddnclem2  34945  itgmulc2nclem2  34953
  Copyright terms: Public domain W3C validator