MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  max0sub Structured version   Visualization version   GIF version

Theorem max0sub 11969
Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
max0sub (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)

Proof of Theorem max0sub
StepHypRef Expression
1 0red 9986 . 2 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 id 22 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3 iftrue 4069 . . . . 5 (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
43adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴)
5 0xr 10031 . . . . . 6 0 ∈ ℝ*
65a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ*)
7 renegcl 10289 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
87adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ)
98rexrd 10034 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ*)
10 le0neg2 10482 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
1110biimpa 501 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0)
12 xrmaxeq 11952 . . . . 5 ((0 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = 0)
136, 9, 11, 12syl3anc 1323 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0)
144, 13oveq12d 6623 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 − 0))
15 recn 9971 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1615adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
1716subid1d 10326 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 − 0) = 𝐴)
1814, 17eqtrd 2660 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
195a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ∈ ℝ*)
20 rexr 10030 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2120adantr 481 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ*)
22 simpr 477 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
23 xrmaxeq 11952 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0)
2419, 21, 22, 23syl3anc 1323 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0)
25 le0neg1 10481 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
2625biimpa 501 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
2726iftrued 4071 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴)
2824, 27oveq12d 6623 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (0 − -𝐴))
29 df-neg 10214 . . . 4 --𝐴 = (0 − -𝐴)
3015adantr 481 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
3130negnegd 10328 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → --𝐴 = 𝐴)
3229, 31syl5eqr 2674 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 − -𝐴) = 𝐴)
3328, 32eqtrd 2660 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
341, 2, 18, 33lecasei 10088 1 (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  ifcif 4063   class class class wbr 4618  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  *cxr 10018  cle 10020  cmin 10211  -cneg 10212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214
This theorem is referenced by:  mbfi1flimlem  23390  itgitg1  23476  itgconst  23486  itgaddlem2  23491  itgmulc2lem2  23500  itgaddnclem2  33087  itgmulc2nclem2  33095
  Copyright terms: Public domain W3C validator