Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfconst Structured version   Visualization version   GIF version

Theorem mbfconst 23447
 Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfconst ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn)

Proof of Theorem mbfconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 807 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
2 fconstmpt 5197 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2fmptd 6425 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}):𝐴⟶ℂ)
4 mblss 23345 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
54adantr 480 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ)
6 cnex 10055 . . . 4 ℂ ∈ V
7 reex 10065 . . . 4 ℝ ∈ V
8 elpm2r 7917 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ))
96, 7, 8mpanl12 718 . . 3 (((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ))
103, 5, 9syl2anc 694 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ))
112a1i 11 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
12 ref 13896 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
1312a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ:ℂ⟶ℝ)
1413feqmptd 6288 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
15 fveq2 6229 . . . . . . . . 9 (𝑦 = 𝐵 → (ℜ‘𝑦) = (ℜ‘𝐵))
161, 11, 14, 15fmptco 6436 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
17 fconstmpt 5197 . . . . . . . 8 (𝐴 × {(ℜ‘𝐵)}) = (𝑥𝐴 ↦ (ℜ‘𝐵))
1816, 17syl6eqr 2703 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)}))
1918cnveqd 5330 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)}))
2019imaeq1d 5500 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) = ((𝐴 × {(ℜ‘𝐵)}) “ 𝑦))
21 recl 13894 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
22 mbfconstlem 23441 . . . . . 6 ((𝐴 ∈ dom vol ∧ (ℜ‘𝐵) ∈ ℝ) → ((𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol)
2321, 22sylan2 490 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol)
2420, 23eqeltrd 2730 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)
25 imf 13897 . . . . . . . . . . 11 ℑ:ℂ⟶ℝ
2625a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ:ℂ⟶ℝ)
2726feqmptd 6288 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
28 fveq2 6229 . . . . . . . . 9 (𝑦 = 𝐵 → (ℑ‘𝑦) = (ℑ‘𝐵))
291, 11, 27, 28fmptco 6436 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
30 fconstmpt 5197 . . . . . . . 8 (𝐴 × {(ℑ‘𝐵)}) = (𝑥𝐴 ↦ (ℑ‘𝐵))
3129, 30syl6eqr 2703 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)}))
3231cnveqd 5330 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)}))
3332imaeq1d 5500 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) = ((𝐴 × {(ℑ‘𝐵)}) “ 𝑦))
34 imcl 13895 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
35 mbfconstlem 23441 . . . . . 6 ((𝐴 ∈ dom vol ∧ (ℑ‘𝐵) ∈ ℝ) → ((𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol)
3634, 35sylan2 490 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol)
3733, 36eqeltrd 2730 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)
3824, 37jca 553 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))
3938ralrimivw 2996 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ran (,)(((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))
40 ismbf1 23438 . 2 ((𝐴 × {𝐵}) ∈ MblFn ↔ ((𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑦 ∈ ran (,)(((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)))
4110, 39, 40sylanbrc 699 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231   ⊆ wss 3607  {csn 4210   ↦ cmpt 4762   × cxp 5141  ◡ccnv 5142  dom cdm 5143  ran crn 5144   “ cima 5146   ∘ ccom 5147  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑pm cpm 7900  ℂcc 9972  ℝcr 9973  (,)cioo 12213  ℜcre 13881  ℑcim 13882  volcvol 23278  MblFncmbf 23428 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xadd 11985  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-xmet 19787  df-met 19788  df-ovol 23279  df-vol 23280  df-mbf 23433 This theorem is referenced by:  mbfss  23458  mbfmulc2lem  23459  mbfpos  23463  ibl0  23598  iblconst  23629  0mbf  33585
 Copyright terms: Public domain W3C validator