MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfconstlem Structured version   Visualization version   GIF version

Theorem mbfconstlem 24155
Description: Lemma for mbfconst 24161 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfconstlem ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)

Proof of Theorem mbfconstlem
StepHypRef Expression
1 cnvimass 5942 . . . . . 6 ((𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶})
21a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶}))
3 cnvimarndm 5943 . . . . . 6 ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) = dom (𝐴 × {𝐶})
4 fconst6g 6561 . . . . . . . 8 (𝐶𝐵 → (𝐴 × {𝐶}):𝐴𝐵)
54adantl 482 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴𝐵)
6 frn 6513 . . . . . . 7 ((𝐴 × {𝐶}):𝐴𝐵 → ran (𝐴 × {𝐶}) ⊆ 𝐵)
7 imass2 5958 . . . . . . 7 (ran (𝐴 × {𝐶}) ⊆ 𝐵 → ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
85, 6, 73syl 18 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
93, 8eqsstrrid 4013 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → dom (𝐴 × {𝐶}) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
102, 9eqssd 3981 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = dom (𝐴 × {𝐶}))
11 fconstg 6559 . . . . . 6 (𝐶 ∈ ℝ → (𝐴 × {𝐶}):𝐴⟶{𝐶})
1211ad2antlr 723 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶})
1312fdmd 6516 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → dom (𝐴 × {𝐶}) = 𝐴)
1410, 13eqtrd 2853 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = 𝐴)
15 simpll 763 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → 𝐴 ∈ dom vol)
1614, 15eqeltrd 2910 . 2 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
1711ad2antlr 723 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶})
18 incom 4175 . . . . 5 ({𝐶} ∩ 𝐵) = (𝐵 ∩ {𝐶})
19 simpr 485 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐵)
20 disjsn 4639 . . . . . 6 ((𝐵 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶𝐵)
2119, 20sylibr 235 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → (𝐵 ∩ {𝐶}) = ∅)
2218, 21syl5eq 2865 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ({𝐶} ∩ 𝐵) = ∅)
23 fimacnvdisj 6550 . . . 4 (((𝐴 × {𝐶}):𝐴⟶{𝐶} ∧ ({𝐶} ∩ 𝐵) = ∅) → ((𝐴 × {𝐶}) “ 𝐵) = ∅)
2417, 22, 23syl2anc 584 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = ∅)
25 0mbl 24067 . . 3 ∅ ∈ dom vol
2624, 25syl6eqel 2918 . 2 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
2716, 26pm2.61dan 809 1 ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  cin 3932  wss 3933  c0 4288  {csn 4557   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551  wf 6344  cr 10524  volcvol 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-xmet 20466  df-met 20467  df-ovol 23992  df-vol 23993
This theorem is referenced by:  ismbf  24156  mbfconst  24161
  Copyright terms: Public domain W3C validator