MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfconstlem Structured version   Visualization version   GIF version

Theorem mbfconstlem 23297
Description: Lemma for mbfconst 23303. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfconstlem ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)

Proof of Theorem mbfconstlem
StepHypRef Expression
1 cnvimass 5448 . . . . . 6 ((𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶})
21a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶}))
3 cnvimarndm 5449 . . . . . 6 ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) = dom (𝐴 × {𝐶})
4 fconst6g 6053 . . . . . . . 8 (𝐶𝐵 → (𝐴 × {𝐶}):𝐴𝐵)
54adantl 482 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴𝐵)
6 frn 6012 . . . . . . 7 ((𝐴 × {𝐶}):𝐴𝐵 → ran (𝐴 × {𝐶}) ⊆ 𝐵)
7 imass2 5464 . . . . . . 7 (ran (𝐴 × {𝐶}) ⊆ 𝐵 → ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
85, 6, 73syl 18 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
93, 8syl5eqssr 3634 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → dom (𝐴 × {𝐶}) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
102, 9eqssd 3605 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = dom (𝐴 × {𝐶}))
11 fconstg 6051 . . . . . 6 (𝐶 ∈ ℝ → (𝐴 × {𝐶}):𝐴⟶{𝐶})
1211ad2antlr 762 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶})
13 fdm 6010 . . . . 5 ((𝐴 × {𝐶}):𝐴⟶{𝐶} → dom (𝐴 × {𝐶}) = 𝐴)
1412, 13syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → dom (𝐴 × {𝐶}) = 𝐴)
1510, 14eqtrd 2660 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = 𝐴)
16 simpll 789 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → 𝐴 ∈ dom vol)
1715, 16eqeltrd 2704 . 2 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
1811ad2antlr 762 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶})
19 incom 3788 . . . . 5 ({𝐶} ∩ 𝐵) = (𝐵 ∩ {𝐶})
20 simpr 477 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐵)
21 disjsn 4221 . . . . . 6 ((𝐵 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶𝐵)
2220, 21sylibr 224 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → (𝐵 ∩ {𝐶}) = ∅)
2319, 22syl5eq 2672 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ({𝐶} ∩ 𝐵) = ∅)
24 fimacnvdisj 6042 . . . 4 (((𝐴 × {𝐶}):𝐴⟶{𝐶} ∧ ({𝐶} ∩ 𝐵) = ∅) → ((𝐴 × {𝐶}) “ 𝐵) = ∅)
2518, 23, 24syl2anc 692 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = ∅)
26 0mbl 23209 . . 3 ∅ ∈ dom vol
2725, 26syl6eqel 2712 . 2 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
2817, 27pm2.61dan 831 1 ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1992  cin 3559  wss 3560  c0 3896  {csn 4153   × cxp 5077  ccnv 5078  dom cdm 5079  ran crn 5080  cima 5082  wf 5846  cr 9880  volcvol 23134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-xadd 11891  df-ioo 12118  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346  df-xmet 19653  df-met 19654  df-ovol 23135  df-vol 23136
This theorem is referenced by:  ismbf  23298  mbfconst  23303
  Copyright terms: Public domain W3C validator