MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfdm Structured version   Visualization version   GIF version

Theorem mbfdm 24221
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfdm (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)

Proof of Theorem mbfdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ref 14465 . . . 4 ℜ:ℂ⟶ℝ
2 mbff 24220 . . . 4 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
3 fco 6525 . . . 4 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
41, 2, 3sylancr 589 . . 3 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
5 fimacnv 6833 . . 3 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℜ ∘ 𝐹) “ ℝ) = dom 𝐹)
64, 5syl 17 . 2 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ ℝ) = dom 𝐹)
7 imaeq2 5919 . . . 4 (𝑥 = ℝ → ((ℜ ∘ 𝐹) “ 𝑥) = ((ℜ ∘ 𝐹) “ ℝ))
87eleq1d 2897 . . 3 (𝑥 = ℝ → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ ℝ) ∈ dom vol))
9 ismbf1 24219 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
10 simpl 485 . . . . 5 ((((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
1110ralimi 3160 . . . 4 (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
129, 11simplbiim 507 . . 3 (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
13 ioomax 12805 . . . . 5 (-∞(,)+∞) = ℝ
14 ioof 12829 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
15 ffn 6508 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
1614, 15ax-mp 5 . . . . . 6 (,) Fn (ℝ* × ℝ*)
17 mnfxr 10692 . . . . . 6 -∞ ∈ ℝ*
18 pnfxr 10689 . . . . . 6 +∞ ∈ ℝ*
19 fnovrn 7317 . . . . . 6 (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
2016, 17, 18, 19mp3an 1457 . . . . 5 (-∞(,)+∞) ∈ ran (,)
2113, 20eqeltrri 2910 . . . 4 ℝ ∈ ran (,)
2221a1i 11 . . 3 (𝐹 ∈ MblFn → ℝ ∈ ran (,))
238, 12, 22rspcdva 3624 . 2 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ ℝ) ∈ dom vol)
246, 23eqeltrrd 2914 1 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  𝒫 cpw 4538   × cxp 5547  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  ccom 5553   Fn wfn 6344  wf 6345  (class class class)co 7150  pm cpm 8401  cc 10529  cr 10530  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668  (,)cioo 12732  cre 14450  cim 14451  volcvol 24058  MblFncmbf 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-ioo 12736  df-cj 14452  df-re 14453  df-mbf 24214
This theorem is referenced by:  ismbf  24223  ismbfcn  24224  mbfimaicc  24226  mbfdm2  24232  mbfres  24239  mbfmulc2lem  24242  mbfimaopn2  24252  cncombf  24253  mbfaddlem  24255  mbfadd  24256  mbfsub  24257  mbfmullem2  24319  mbfmul  24321  bddmulibl  24433  bddibl  24434  itgulm  24990  bddiblnc  34956  ftc1anclem1  34961  ftc1anclem5  34965  ftc1anclem8  34968  smfmbfcex  43030
  Copyright terms: Public domain W3C validator