MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfdm2 Structured version   Visualization version   GIF version

Theorem mbfdm2 23306
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
mbfmptcl.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mbfdm2 (𝜑𝐴 ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfdm2
StepHypRef Expression
1 mbfmptcl.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 2965 . . 3 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 dmmptg 5594 . . 3 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
42, 3syl 17 . 2 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
5 mbfmptcl.1 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6 mbfdm 23296 . . 3 ((𝑥𝐴𝐵) ∈ MblFn → dom (𝑥𝐴𝐵) ∈ dom vol)
75, 6syl 17 . 2 (𝜑 → dom (𝑥𝐴𝐵) ∈ dom vol)
84, 7eqeltrrd 2705 1 (𝜑𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wral 2912  cmpt 4678  dom cdm 5079  volcvol 23134  MblFncmbf 23284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-er 7688  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-2 11024  df-ioo 12118  df-cj 13768  df-re 13769  df-mbf 23289
This theorem is referenced by:  mbfss  23314  mbfpos  23319  mbfposr  23320  mbfmulc2  23331  mbfi1flim  23391  itgge0  23478  itgss3  23482  itgless  23484  ibladdlem  23487  ibladd  23488  itgaddlem1  23490  iblabslem  23495  itgsplit  23503  bddmulibl  23506  itggt0  23509  itgcn  23510  ibladdnclem  33065  itgaddnclem1  33067  iblabsnclem  33072  itgmulc2nclem2  33076  itgmulc2nc  33077  itgabsnc  33078  iblsplit  39457
  Copyright terms: Public domain W3C validator