MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flim Structured version   Visualization version   GIF version

Theorem mbfi1flim 23535
Description: Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1 (𝜑𝐹 ∈ MblFn)
mbfi1flim.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
mbfi1flim (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐴   𝑔,𝐹,𝑛,𝑥   𝜑,𝑔,𝑛,𝑥

Proof of Theorem mbfi1flim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iftrue 4125 . . . . . . . 8 (𝑦𝐴 → if(𝑦𝐴, (𝐹𝑦), 0) = (𝐹𝑦))
21mpteq2ia 4773 . . . . . . 7 (𝑦𝐴 ↦ if(𝑦𝐴, (𝐹𝑦), 0)) = (𝑦𝐴 ↦ (𝐹𝑦))
3 mbfi1flim.2 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℝ)
43feqmptd 6288 . . . . . . . 8 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
5 mbfi1flim.1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
64, 5eqeltrrd 2731 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ MblFn)
72, 6syl5eqel 2734 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ if(𝑦𝐴, (𝐹𝑦), 0)) ∈ MblFn)
8 fvex 6239 . . . . . . . 8 (𝐹𝑦) ∈ V
9 c0ex 10072 . . . . . . . 8 0 ∈ V
108, 9ifex 4189 . . . . . . 7 if(𝑦𝐴, (𝐹𝑦), 0) ∈ V
1110a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → if(𝑦𝐴, (𝐹𝑦), 0) ∈ V)
127, 11mbfdm2 23450 . . . . 5 (𝜑𝐴 ∈ dom vol)
13 mblss 23345 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1412, 13syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
15 rembl 23354 . . . . 5 ℝ ∈ dom vol
1615a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
17 eldifn 3766 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) → ¬ 𝑦𝐴)
1817adantl 481 . . . . 5 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑦𝐴)
1918iffalsed 4130 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → if(𝑦𝐴, (𝐹𝑦), 0) = 0)
2014, 16, 11, 19, 7mbfss 23458 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)) ∈ MblFn)
213ffvelrnda 6399 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
22 0red 10079 . . . . . 6 ((𝜑 ∧ ¬ 𝑦𝐴) → 0 ∈ ℝ)
2321, 22ifclda 4153 . . . . 5 (𝜑 → if(𝑦𝐴, (𝐹𝑦), 0) ∈ ℝ)
2423adantr 480 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(𝑦𝐴, (𝐹𝑦), 0) ∈ ℝ)
25 eqid 2651 . . . 4 (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))
2624, 25fmptd 6425 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)):ℝ⟶ℝ)
2720, 26mbfi1flimlem 23534 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
28 ssralv 3699 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
2914, 28syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
3014sselda 3636 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
31 eleq1 2718 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
32 fveq2 6229 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3331, 32ifbieq1d 4142 . . . . . . . . . 10 (𝑦 = 𝑥 → if(𝑦𝐴, (𝐹𝑦), 0) = if(𝑥𝐴, (𝐹𝑥), 0))
34 fvex 6239 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
3534, 9ifex 4189 . . . . . . . . . 10 if(𝑥𝐴, (𝐹𝑥), 0) ∈ V
3633, 25, 35fvmpt 6321 . . . . . . . . 9 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = if(𝑥𝐴, (𝐹𝑥), 0))
3730, 36syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = if(𝑥𝐴, (𝐹𝑥), 0))
38 iftrue 4125 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, (𝐹𝑥), 0) = (𝐹𝑥))
3938adantl 481 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, (𝐹𝑥), 0) = (𝐹𝑥))
4037, 39eqtrd 2685 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = (𝐹𝑥))
4140breq2d 4697 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4241ralbidva 3014 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) ↔ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4329, 42sylibd 229 . . . 4 (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4443anim2d 588 . . 3 (𝜑 → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
4544eximdv 1886 . 2 (𝜑 → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
4627, 45mpd 15 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  cr 9973  0cc0 9974  cn 11058  cli 14259  volcvol 23278  MblFncmbf 23428  1citg1 23429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-0p 23482
This theorem is referenced by:  mbfmullem  23537
  Copyright terms: Public domain W3C validator