MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem6 24248
Description: Lemma for mbfi1fseq 24249. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem6 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑚,𝑛,𝑥,𝑦,𝐹   𝑔,𝐺,𝑛,𝑥   𝑚,𝐽   𝜑,𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔)   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦,𝑔,𝑛)

Proof of Theorem mbfi1fseqlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . . 3 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
4 mbfi1fseq.4 . . 3 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
51, 2, 3, 4mbfi1fseqlem4 24246 . 2 (𝜑𝐺:ℕ⟶dom ∫1)
61, 2, 3, 4mbfi1fseqlem5 24247 . . 3 ((𝜑𝑛 ∈ ℕ) → (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
76ralrimiva 3179 . 2 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
8 simpr 485 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
98recnd 10657 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
109abscld 14784 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
112ffvelrnda 6843 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
12 elrege0 12830 . . . . . . . 8 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1311, 12sylib 219 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1413simpld 495 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1510, 14readdcld 10658 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
16 arch 11882 . . . . 5 (((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
1715, 16syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ) → ∃𝑘 ∈ ℕ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
18 eqid 2818 . . . . 5 (ℤ𝑘) = (ℤ𝑘)
19 nnz 11992 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2019ad2antrl 724 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℤ)
21 nnuz 12269 . . . . . . . 8 ℕ = (ℤ‘1)
22 1zzd 12001 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
23 halfcn 11840 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (1 / 2) ∈ ℂ)
25 halfre 11839 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
26 halfge0 11842 . . . . . . . . . . . 12 0 ≤ (1 / 2)
27 absid 14644 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2825, 26, 27mp2an 688 . . . . . . . . . . 11 (abs‘(1 / 2)) = (1 / 2)
29 halflt1 11843 . . . . . . . . . . 11 (1 / 2) < 1
3028, 29eqbrtri 5078 . . . . . . . . . 10 (abs‘(1 / 2)) < 1
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (abs‘(1 / 2)) < 1)
3224, 31expcnv 15207 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
3314recnd 10657 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
34 nnex 11632 . . . . . . . . . 10 ℕ ∈ V
3534mptex 6977 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V
3635a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ∈ V)
37 nnnn0 11892 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
39 oveq2 7153 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑗))
40 eqid 2818 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
41 ovex 7178 . . . . . . . . . . 11 ((1 / 2)↑𝑗) ∈ V
4239, 40, 41fvmpt 6761 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
4338, 42syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) = ((1 / 2)↑𝑗))
44 expcl 13435 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
4523, 38, 44sylancr 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
4643, 45eqeltrd 2910 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗) ∈ ℂ)
4739oveq2d 7161 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝐹𝑥) − ((1 / 2)↑𝑛)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
48 eqid 2818 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))
49 ovex 7178 . . . . . . . . . . 11 ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ V
5047, 48, 49fvmpt 6761 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5150adantl 482 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5243oveq2d 7161 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
5351, 52eqtr4d 2856 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑗)))
5421, 22, 32, 33, 36, 46, 53climsubc2 14983 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ ((𝐹𝑥) − 0))
5533subid1d 10974 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) − 0) = (𝐹𝑥))
5654, 55breqtrd 5083 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5756adantr 481 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛))) ⇝ (𝐹𝑥))
5834mptex 6977 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V
5958a1i 11 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ∈ V)
60 simprl 767 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → 𝑘 ∈ ℕ)
61 eluznn 12306 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6260, 61sylan 580 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ)
6362, 50syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) = ((𝐹𝑥) − ((1 / 2)↑𝑗)))
6414ad2antrr 722 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℝ)
6562, 37syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℕ0)
66 reexpcl 13434 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℝ)
6725, 65, 66sylancr 587 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) ∈ ℝ)
6864, 67resubcld 11056 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ∈ ℝ)
6963, 68eqeltrd 2910 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ∈ ℝ)
70 fveq2 6663 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐺𝑛) = (𝐺𝑗))
7170fveq1d 6665 . . . . . . . 8 (𝑛 = 𝑗 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑗)‘𝑥))
72 eqid 2818 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))
73 fvex 6676 . . . . . . . 8 ((𝐺𝑗)‘𝑥) ∈ V
7471, 72, 73fvmpt 6761 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
7562, 74syl 17 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((𝐺𝑗)‘𝑥))
765ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝐺:ℕ⟶dom ∫1)
7776, 62ffvelrnd 6844 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) ∈ dom ∫1)
78 i1ff 24204 . . . . . . . 8 ((𝐺𝑗) ∈ dom ∫1 → (𝐺𝑗):ℝ⟶ℝ)
7977, 78syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗):ℝ⟶ℝ)
808ad2antrr 722 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℝ)
8179, 80ffvelrnd 6844 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) ∈ ℝ)
8275, 81eqeltrd 2910 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ∈ ℝ)
8333ad2antrr 722 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ ℂ)
84 2nn 11698 . . . . . . . . . . . . . 14 2 ∈ ℕ
85 nnexpcl 13430 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8684, 65, 85sylancr 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℕ)
8786nnred 11641 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℝ)
8887recnd 10657 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ∈ ℂ)
8986nnne0d 11675 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (2↑𝑗) ≠ 0)
9083, 88, 89divcan4d 11410 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) = (𝐹𝑥))
9190eqcomd 2824 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) = (((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)))
92 2cnd 11703 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ∈ ℂ)
93 2ne0 11729 . . . . . . . . . . 11 2 ≠ 0
9493a1i 11 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 2 ≠ 0)
95 eluzelz 12241 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑘) → 𝑗 ∈ ℤ)
9695adantl 482 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℤ)
9792, 94, 96exprecd 13506 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9891, 97oveq12d 7163 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
9964, 87remulcld 10659 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℝ)
10099recnd 10657 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ∈ ℂ)
101 1cnd 10624 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℂ)
102100, 101, 88, 89divsubdird 11443 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) / (2↑𝑗)) − (1 / (2↑𝑗))))
10398, 102eqtr4d 2856 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) = ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)))
104 fllep1 13159 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
10599, 104syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1))
106 1red 10630 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 1 ∈ ℝ)
107 reflcl 13154 . . . . . . . . . . 11 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10899, 107syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ)
10999, 106, 108lesubaddd 11225 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((𝐹𝑥) · (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) + 1)))
110105, 109mpbird 258 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))))
111 peano2rem 10941 . . . . . . . . . 10 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11299, 111syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ)
11386nngt0d 11674 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 < (2↑𝑗))
114 lediv1 11493 . . . . . . . . 9 (((((𝐹𝑥) · (2↑𝑗)) − 1) ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
115112, 108, 87, 113, 114syl112anc 1366 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) ≤ (⌊‘((𝐹𝑥) · (2↑𝑗))) ↔ ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗))))
116110, 115mpbid 233 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((((𝐹𝑥) · (2↑𝑗)) − 1) / (2↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
117103, 116eqbrtrd 5079 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) − ((1 / 2)↑𝑗)) ≤ ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
1181, 2, 3, 4mbfi1fseqlem2 24244 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
11962, 118syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐺𝑗) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)))
120119fveq1d 6665 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐺𝑗)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥))
121 ovex 7178 . . . . . . . . . . 11 (𝑗𝐽𝑥) ∈ V
122 vex 3495 . . . . . . . . . . 11 𝑗 ∈ V
123121, 122ifex 4511 . . . . . . . . . 10 if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) ∈ V
124 c0ex 10623 . . . . . . . . . 10 0 ∈ V
125123, 124ifex 4511 . . . . . . . . 9 if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V
126 eqid 2818 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
127126fvmpt2 6771 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12880, 125, 127sylancl 586 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))‘𝑥) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
12975, 120, 1283eqtrd 2857 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0))
13010ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ∈ ℝ)
13115ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ∈ ℝ)
13262nnred 11641 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗 ∈ ℝ)
13311ad2antrr 722 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ∈ (0[,)+∞))
134133, 12sylib 219 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
135134simprd 496 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (𝐹𝑥))
136130, 64addge01d 11216 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (𝐹𝑥) ↔ (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
137135, 136mpbid 233 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
13860adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
139138nnred 11641 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
140 simplrr 774 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)
141131, 139, 140ltled 10776 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑘)
142 eluzle 12244 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑘) → 𝑘𝑗)
143142adantl 482 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑘𝑗)
144131, 139, 132, 141, 143letrd 10785 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) + (𝐹𝑥)) ≤ 𝑗)
145130, 131, 132, 137, 144letrd 10785 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (abs‘𝑥) ≤ 𝑗)
14680, 132absled 14778 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((abs‘𝑥) ≤ 𝑗 ↔ (-𝑗𝑥𝑥𝑗)))
147145, 146mpbid 233 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑗𝑥𝑥𝑗))
148147simpld 495 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗𝑥)
149147simprd 496 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥𝑗)
150132renegcld 11055 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → -𝑗 ∈ ℝ)
151 elicc2 12789 . . . . . . . . . 10 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
152150, 132, 151syl2anc 584 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑥 ∈ (-𝑗[,]𝑗) ↔ (𝑥 ∈ ℝ ∧ -𝑗𝑥𝑥𝑗)))
15380, 148, 149, 152mpbir3and 1334 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ (-𝑗[,]𝑗))
154153iftrued 4471 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if(𝑥 ∈ (-𝑗[,]𝑗), if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗), 0) = if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗))
155 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑦 = 𝑥)
156155fveq2d 6667 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
157 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑗𝑦 = 𝑥) → 𝑚 = 𝑗)
158157oveq2d 7161 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑗𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑗))
159156, 158oveq12d 7163 . . . . . . . . . . . . . 14 ((𝑚 = 𝑗𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝑗)))
160159fveq2d 6667 . . . . . . . . . . . . 13 ((𝑚 = 𝑗𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝑗))))
161160, 158oveq12d 7163 . . . . . . . . . . . 12 ((𝑚 = 𝑗𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
162 ovex 7178 . . . . . . . . . . . 12 ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ V
163161, 3, 162ovmpoa 7294 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
16462, 80, 163syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
165108, 86nndivred 11679 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ∈ ℝ)
166 flle 13157 . . . . . . . . . . . . 13 (((𝐹𝑥) · (2↑𝑗)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
16799, 166syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗)))
168 ledivmul2 11507 . . . . . . . . . . . . 13 (((⌊‘((𝐹𝑥) · (2↑𝑗))) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑗) ∈ ℝ ∧ 0 < (2↑𝑗))) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
169108, 64, 87, 113, 168syl112anc 1366 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥) ↔ (⌊‘((𝐹𝑥) · (2↑𝑗))) ≤ ((𝐹𝑥) · (2↑𝑗))))
170167, 169mpbird 258 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ (𝐹𝑥))
1719ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℂ)
172171absge0d 14792 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → 0 ≤ (abs‘𝑥))
17364, 130addge02d 11217 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (0 ≤ (abs‘𝑥) ↔ (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥))))
174172, 173mpbid 233 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ ((abs‘𝑥) + (𝐹𝑥)))
17564, 131, 132, 174, 144letrd 10785 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑥) ≤ 𝑗)
176165, 64, 132, 170, 175letrd 10785 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)) ≤ 𝑗)
177164, 176eqbrtrd 5079 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑗𝐽𝑥) ≤ 𝑗)
178177iftrued 4471 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = (𝑗𝐽𝑥))
179178, 164eqtrd 2853 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → if((𝑗𝐽𝑥) ≤ 𝑗, (𝑗𝐽𝑥), 𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
180129, 154, 1793eqtrd 2857 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) = ((⌊‘((𝐹𝑥) · (2↑𝑗))) / (2↑𝑗)))
181117, 63, 1803brtr4d 5089 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑥) − ((1 / 2)↑𝑛)))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗))
182180, 170eqbrtrd 5079 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥))‘𝑗) ≤ (𝐹𝑥))
18318, 20, 57, 59, 69, 82, 181, 182climsqz 14985 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ ((abs‘𝑥) + (𝐹𝑥)) < 𝑘)) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18417, 183rexlimddv 3288 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
185184ralrimiva 3179 . 2 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18634mptex 6977 . . . 4 (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ∈ V
1874, 186eqeltri 2906 . . 3 𝐺 ∈ V
188 feq1 6488 . . . 4 (𝑔 = 𝐺 → (𝑔:ℕ⟶dom ∫1𝐺:ℕ⟶dom ∫1))
189 fveq1 6662 . . . . . . 7 (𝑔 = 𝐺 → (𝑔𝑛) = (𝐺𝑛))
190189breq2d 5069 . . . . . 6 (𝑔 = 𝐺 → (0𝑝r ≤ (𝑔𝑛) ↔ 0𝑝r ≤ (𝐺𝑛)))
191 fveq1 6662 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))
192189, 191breq12d 5070 . . . . . 6 (𝑔 = 𝐺 → ((𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1)) ↔ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))))
193190, 192anbi12d 630 . . . . 5 (𝑔 = 𝐺 → ((0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
194193ralbidv 3194 . . . 4 (𝑔 = 𝐺 → (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ↔ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1)))))
195189fveq1d 6665 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔𝑛)‘𝑥) = ((𝐺𝑛)‘𝑥))
196195mpteq2dv 5153 . . . . . 6 (𝑔 = 𝐺 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)))
197196breq1d 5067 . . . . 5 (𝑔 = 𝐺 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
198197ralbidv 3194 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
199188, 194, 1983anbi123d 1427 . . 3 (𝑔 = 𝐺 → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ (𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
200187, 199spcev 3604 . 2 ((𝐺:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝐺𝑛) ∧ (𝐺𝑛) ∘r ≤ (𝐺‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝐺𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
2015, 7, 185, 200syl3anc 1363 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  wrex 3136  Vcvv 3492  ifcif 4463   class class class wbr 5057  cmpt 5137  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  r cofr 7397  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  +∞cpnf 10660   < clt 10663  cle 10664  cmin 10858  -cneg 10859   / cdiv 11285  cn 11626  2c2 11680  0cn0 11885  cz 11969  cuz 12231  [,)cico 12728  [,]cicc 12729  cfl 13148  cexp 13417  abscabs 14581  cli 14829  MblFncmbf 24142  1citg1 24143  0𝑝c0p 24197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-rest 16684  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-bases 21482  df-cmp 21923  df-ovol 23992  df-vol 23993  df-mbf 24147  df-itg1 24148  df-0p 24198
This theorem is referenced by:  mbfi1fseq  24249
  Copyright terms: Public domain W3C validator