MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflimlem Structured version   Visualization version   GIF version

Theorem mbflimlem 23415
Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1 𝑍 = (ℤ𝑀)
mbflim.2 (𝜑𝑀 ∈ ℤ)
mbflim.4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
mbflim.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflimlem.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbflimlem (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐶(𝑥,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem mbflimlem
Dummy variables 𝑗 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . . . 5 𝑍 = (ℤ𝑀)
2 mbflimlem.6 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
32anass1rs 848 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
4 eqid 2620 . . . . . 6 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
53, 4fmptd 6371 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
6 mbflim.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
76adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
8 mbflim.4 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
9 climrel 14204 . . . . . . . 8 Rel ⇝
109releldmi 5351 . . . . . . 7 ((𝑛𝑍𝐵) ⇝ 𝐶 → (𝑛𝑍𝐵) ∈ dom ⇝ )
118, 10syl 17 . . . . . 6 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ∈ dom ⇝ )
121climcau 14382 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑛𝑍𝐵) ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)(abs‘(((𝑛𝑍𝐵)‘𝑗) − ((𝑛𝑍𝐵)‘𝑘))) < 𝑦)
137, 11, 12syl2anc 692 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)(abs‘(((𝑛𝑍𝐵)‘𝑗) − ((𝑛𝑍𝐵)‘𝑘))) < 𝑦)
141, 5, 13caurcvg 14388 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ (lim sup‘(𝑛𝑍𝐵)))
15 climuni 14264 . . . 4 (((𝑛𝑍𝐵) ⇝ (lim sup‘(𝑛𝑍𝐵)) ∧ (𝑛𝑍𝐵) ⇝ 𝐶) → (lim sup‘(𝑛𝑍𝐵)) = 𝐶)
1614, 8, 15syl2anc 692 . . 3 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = 𝐶)
1716mpteq2dva 4735 . 2 (𝜑 → (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) = (𝑥𝐴𝐶))
18 eqid 2620 . . 3 (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
19 eqid 2620 . . 3 (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
205ffvelrnda 6345 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) ∈ ℝ)
211, 7, 14, 20climrecl 14295 . . 3 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
22 mbflim.5 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
231, 18, 19, 6, 21, 22, 2mbflimsup 23414 . 2 (𝜑 → (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) ∈ MblFn)
2417, 23eqeltrrd 2700 1 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wral 2909  wrex 2910  cin 3566   class class class wbr 4644  cmpt 4720  dom cdm 5104  cima 5107  cfv 5876  (class class class)co 6635  supcsup 8331  cr 9920  +∞cpnf 10056  *cxr 10058   < clt 10059  cmin 10251  cz 11362  cuz 11672  +crp 11817  [,)cico 12162  abscabs 13955  lim supclsp 14182  cli 14196  MblFncmbf 23364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-xadd 11932  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-xmet 19720  df-met 19721  df-ovol 23214  df-vol 23215  df-mbf 23369
This theorem is referenced by:  mbflim  23416
  Copyright terms: Public domain W3C validator