MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmax Structured version   Visualization version   GIF version

Theorem mbfmax 24252
Description: The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmax.1 (𝜑𝐹:𝐴⟶ℝ)
mbfmax.2 (𝜑𝐹 ∈ MblFn)
mbfmax.3 (𝜑𝐺:𝐴⟶ℝ)
mbfmax.4 (𝜑𝐺 ∈ MblFn)
mbfmax.5 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
Assertion
Ref Expression
mbfmax (𝜑𝐻 ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem mbfmax
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmax.3 . . . . 5 (𝜑𝐺:𝐴⟶ℝ)
21ffvelrnda 6853 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
3 mbfmax.1 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
43ffvelrnda 6853 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
52, 4ifcld 4514 . . 3 ((𝜑𝑥𝐴) → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) ∈ ℝ)
6 mbfmax.5 . . 3 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
75, 6fmptd 6880 . 2 (𝜑𝐻:𝐴⟶ℝ)
83adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐹:𝐴⟶ℝ)
98ffvelrnda 6853 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
109rexrd 10693 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ*)
111adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐺:𝐴⟶ℝ)
1211ffvelrnda 6853 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
1312rexrd 10693 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ*)
14 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → 𝑦 ∈ ℝ*)
15 xrmaxle 12579 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1610, 13, 14, 15syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1716notbid 320 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
18 ianor 978 . . . . . . . . . 10 (¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦))
1917, 18syl6bb 289 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
20 pnfxr 10697 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
21 elioo2 12782 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2214, 20, 21sylancl 588 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
23 3anan12 1092 . . . . . . . . . . . 12 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2422, 23syl6bb 289 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
25 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
26 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
2725, 26breq12d 5081 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑥) ≤ (𝐺𝑥) ↔ (𝐹𝑧) ≤ (𝐺𝑧)))
2827, 26, 25ifbieq12d 4496 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
29 fvex 6685 . . . . . . . . . . . . . . 15 (𝐺𝑧) ∈ V
30 fvex 6685 . . . . . . . . . . . . . . 15 (𝐹𝑧) ∈ V
3129, 30ifex 4517 . . . . . . . . . . . . . 14 if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ V
3228, 6, 31fvmpt 6770 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3332adantl 484 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3433eleq1d 2899 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞)))
3512, 9ifcld 4514 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ)
36 ltpnf 12518 . . . . . . . . . . . . 13 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)
3735, 36jccir 524 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))
3837biantrud 534 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
3924, 34, 383bitr4d 313 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
4035rexrd 10693 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*)
41 xrltnle 10710 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4214, 40, 41syl2anc 586 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4339, 42bitrd 281 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
44 elioo2 12782 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
4514, 20, 44sylancl 588 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
46 3anan12 1092 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞)))
4745, 46syl6bb 289 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
48 ltpnf 12518 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) < +∞)
499, 48jccir 524 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))
5049biantrud 534 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
51 xrltnle 10710 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐹𝑧) ∈ ℝ*) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5214, 10, 51syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5347, 50, 523bitr2d 309 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
54 elioo2 12782 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
5514, 20, 54sylancl 588 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
56 3anan12 1092 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞)))
5755, 56syl6bb 289 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
58 ltpnf 12518 . . . . . . . . . . . . 13 ((𝐺𝑧) ∈ ℝ → (𝐺𝑧) < +∞)
5912, 58jccir 524 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))
6059biantrud 534 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
61 xrltnle 10710 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6214, 13, 61syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6357, 60, 623bitr2d 309 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6453, 63orbi12d 915 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
6519, 43, 643bitr4d 313 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6665pm5.32da 581 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
67 andi 1004 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6866, 67syl6bb 289 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
697ffnd 6517 . . . . . . . 8 (𝜑𝐻 Fn 𝐴)
7069adantr 483 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → 𝐻 Fn 𝐴)
71 elpreima 6830 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
7270, 71syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
738ffnd 6517 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐹 Fn 𝐴)
74 elpreima 6830 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7573, 74syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7611ffnd 6517 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐺 Fn 𝐴)
77 elpreima 6830 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
7876, 77syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
7975, 78orbi12d 915 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
8068, 72, 793bitr4d 313 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞)))))
81 elun 4127 . . . . 5 (𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))))
8280, 81syl6bbr 291 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ 𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞)))))
8382eqrdv 2821 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) = ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))))
84 mbfmax.2 . . . . . 6 (𝜑𝐹 ∈ MblFn)
85 mbfima 24233 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
8684, 3, 85syl2anc 586 . . . . 5 (𝜑 → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
87 mbfmax.4 . . . . . 6 (𝜑𝐺 ∈ MblFn)
88 mbfima 24233 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
8987, 1, 88syl2anc 586 . . . . 5 (𝜑 → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
90 unmbl 24140 . . . . 5 (((𝐹 “ (𝑦(,)+∞)) ∈ dom vol ∧ (𝐺 “ (𝑦(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9186, 89, 90syl2anc 586 . . . 4 (𝜑 → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9291adantr 483 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9383, 92eqeltrd 2915 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) ∈ dom vol)
94 xrmaxlt 12577 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
9510, 13, 14, 94syl3anc 1367 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
96 mnfxr 10700 . . . . . . . . . . . 12 -∞ ∈ ℝ*
97 elioo2 12782 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
9896, 14, 97sylancr 589 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
99 df-3an 1085 . . . . . . . . . . 11 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
10098, 99syl6bb 289 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
10133eleq1d 2899 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦)))
102 mnflt 12521 . . . . . . . . . . . 12 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
10335, 102jccir 524 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
104103biantrurd 535 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
105100, 101, 1043bitr4d 313 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
106 mnflt 12521 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ ℝ → -∞ < (𝐹𝑧))
1079, 106jccir 524 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)))
108 elioo2 12782 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
10996, 14, 108sylancr 589 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
110 df-3an 1085 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦))
111109, 110syl6bb 289 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦)))
112107, 111mpbirand 705 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) < 𝑦))
113 mnflt 12521 . . . . . . . . . . . 12 ((𝐺𝑧) ∈ ℝ → -∞ < (𝐺𝑧))
11412, 113jccir 524 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)))
115 elioo2 12782 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
11696, 14, 115sylancr 589 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
117 df-3an 1085 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦))
118116, 117syl6bb 289 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦)))
119114, 118mpbirand 705 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (𝐺𝑧) < 𝑦))
120112, 119anbi12d 632 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
12195, 105, 1203bitr4d 313 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
122121pm5.32da 581 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
123 anandi 674 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
124122, 123syl6bb 289 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
125 elpreima 6830 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
12670, 125syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
127 elpreima 6830 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
12873, 127syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
129 elpreima 6830 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
13076, 129syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
131128, 130anbi12d 632 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
132124, 126, 1313bitr4d 313 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦)))))
133 elin 4171 . . . . 5 (𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))))
134132, 133syl6bbr 291 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ 𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦)))))
135134eqrdv 2821 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) = ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))))
136 mbfima 24233 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
13784, 3, 136syl2anc 586 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
138 mbfima 24233 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
13987, 1, 138syl2anc 586 . . . . 5 (𝜑 → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
140 inmbl 24145 . . . . 5 (((𝐹 “ (-∞(,)𝑦)) ∈ dom vol ∧ (𝐺 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
141137, 139, 140syl2anc 586 . . . 4 (𝜑 → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
142141adantr 483 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
143135, 142eqeltrd 2915 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) ∈ dom vol)
1447, 93, 143ismbfd 24242 1 (𝜑𝐻 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cun 3936  cin 3937  ifcif 4469   class class class wbr 5068  cmpt 5148  ccnv 5556  dom cdm 5557  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  (,)cioo 12741  volcvol 24066  MblFncmbf 24217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222
This theorem is referenced by:  mbfpos  24254
  Copyright terms: Public domain W3C validator