Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmvolf Structured version   Visualization version   GIF version

Theorem mbfmvolf 30313
 Description: Measurable functions with respect to the Lebesgue measure are real-valued functions on the real numbers. (Contributed by Thierry Arnoux, 27-Mar-2017.)
Assertion
Ref Expression
mbfmvolf (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹:ℝ⟶ℝ)

Proof of Theorem mbfmvolf
StepHypRef Expression
1 dmvlsiga 30177 . . . . . 6 dom vol ∈ (sigAlgebra‘ℝ)
2 issgon 30171 . . . . . 6 (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ∈ ran sigAlgebra ∧ ℝ = dom vol))
31, 2mpbi 220 . . . . 5 (dom vol ∈ ran sigAlgebra ∧ ℝ = dom vol)
43simpli 474 . . . 4 dom vol ∈ ran sigAlgebra
54a1i 11 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → dom vol ∈ ran sigAlgebra)
6 brsigarn 30232 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
7 issgon 30171 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) ↔ (𝔅 ran sigAlgebra ∧ ℝ = 𝔅))
86, 7mpbi 220 . . . . 5 (𝔅 ran sigAlgebra ∧ ℝ = 𝔅)
98simpli 474 . . . 4 𝔅 ran sigAlgebra
109a1i 11 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → 𝔅 ran sigAlgebra)
11 id 22 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ (dom volMblFnM𝔅))
125, 10, 11mbfmf 30302 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹: dom vol⟶ 𝔅)
133simpri 478 . . 3 ℝ = dom vol
148simpri 478 . . 3 ℝ = 𝔅
1513, 14feq23i 6037 . 2 (𝐹:ℝ⟶ℝ ↔ 𝐹: dom vol⟶ 𝔅)
1612, 15sylibr 224 1 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹:ℝ⟶ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1482   ∈ wcel 1989  ∪ cuni 4434  dom cdm 5112  ran crn 5113  ⟶wf 5882  ‘cfv 5886  (class class class)co 6647  ℝcr 9932  volcvol 23226  sigAlgebracsiga 30155  𝔅ℝcbrsiga 30229  MblFnMcmbfm 30297 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cc 9254  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-disj 4619  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-n0 11290  df-z 11375  df-uz 11685  df-q 11786  df-rp 11830  df-xadd 11944  df-ioo 12176  df-ico 12178  df-icc 12179  df-fz 12324  df-fzo 12462  df-fl 12588  df-seq 12797  df-exp 12856  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-clim 14213  df-rlim 14214  df-sum 14411  df-topgen 16098  df-xmet 19733  df-met 19734  df-bases 20744  df-ovol 23227  df-vol 23228  df-siga 30156  df-sigagen 30187  df-brsiga 30230  df-mbfm 30298 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator