MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfpos Structured version   Visualization version   GIF version

Theorem mbfpos 23609
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypotheses
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
mbfpos.2 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfpos (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfpos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 c0ex 10218 . . . . . . 7 0 ∈ V
21fvconst2 6625 . . . . . 6 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
32adantl 473 . . . . 5 ((𝜑𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
4 simpr 479 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 mbfpos.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
6 eqid 2752 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 6445 . . . . . 6 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2anc 696 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8breq12d 4809 . . . 4 ((𝜑𝑥𝐴) → (((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ 𝐵))
109, 8, 3ifbieq12d 4249 . . 3 ((𝜑𝑥𝐴) → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(0 ≤ 𝐵, 𝐵, 0))
1110mpteq2dva 4888 . 2 (𝜑 → (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
12 0re 10224 . . . . 5 0 ∈ ℝ
1312fconst6 6248 . . . 4 (𝐴 × {0}):𝐴⟶ℝ
1413a1i 11 . . 3 (𝜑 → (𝐴 × {0}):𝐴⟶ℝ)
15 mbfpos.2 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
1615, 5mbfdm2 23596 . . . 4 (𝜑𝐴 ∈ dom vol)
17 0cnd 10217 . . . 4 (𝜑 → 0 ∈ ℂ)
18 mbfconst 23593 . . . 4 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
1916, 17, 18syl2anc 696 . . 3 (𝜑 → (𝐴 × {0}) ∈ MblFn)
205, 6fmptd 6540 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
21 nfcv 2894 . . . 4 𝑦if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))
22 nfcv 2894 . . . . . 6 𝑥((𝐴 × {0})‘𝑦)
23 nfcv 2894 . . . . . 6 𝑥
24 nffvmpt1 6352 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
2522, 23, 24nfbr 4843 . . . . 5 𝑥((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦)
2625, 24, 22nfif 4251 . . . 4 𝑥if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))
27 fveq2 6344 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 × {0})‘𝑥) = ((𝐴 × {0})‘𝑦))
28 fveq2 6344 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑦))
2927, 28breq12d 4809 . . . . 5 (𝑥 = 𝑦 → (((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ ((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦)))
3029, 28, 27ifbieq12d 4249 . . . 4 (𝑥 = 𝑦 → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)))
3121, 26, 30cbvmpt 4893 . . 3 (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑦𝐴 ↦ if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)))
3214, 19, 20, 15, 31mbfmax 23607 . 2 (𝜑 → (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) ∈ MblFn)
3311, 32eqeltrrd 2832 1 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  ifcif 4222  {csn 4313   class class class wbr 4796  cmpt 4873   × cxp 5256  dom cdm 5258  wf 6037  cfv 6041  cc 10118  cr 10119  0cc0 10120  cle 10259  volcvol 23424  MblFncmbf 23574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-q 11974  df-rp 12018  df-xadd 12132  df-ioo 12364  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-xmet 19933  df-met 19934  df-ovol 23425  df-vol 23426  df-mbf 23579
This theorem is referenced by:  mbfposb  23611  mbfi1flimlem  23680  itgreval  23754  ibladdlem  23777  iblabslem  23785  mbfposadd  33762  ibladdnclem  33771  iblabsnclem  33778  itgmulc2nclem2  33782
  Copyright terms: Public domain W3C validator