![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfpos | Structured version Visualization version GIF version |
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
mbfpos.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
mbfpos.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
Ref | Expression |
---|---|
mbfpos | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10218 | . . . . . . 7 ⊢ 0 ∈ V | |
2 | 1 | fvconst2 6625 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
3 | 2 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
4 | simpr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | mbfpos.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
6 | eqid 2752 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | fvmpt2 6445 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
8 | 4, 5, 7 | syl2anc 696 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
9 | 3, 8 | breq12d 4809 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 0 ≤ 𝐵)) |
10 | 9, 8, 3 | ifbieq12d 4249 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(0 ≤ 𝐵, 𝐵, 0)) |
11 | 10 | mpteq2dva 4888 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) |
12 | 0re 10224 | . . . . 5 ⊢ 0 ∈ ℝ | |
13 | 12 | fconst6 6248 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶ℝ |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}):𝐴⟶ℝ) |
15 | mbfpos.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
16 | 15, 5 | mbfdm2 23596 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
17 | 0cnd 10217 | . . . 4 ⊢ (𝜑 → 0 ∈ ℂ) | |
18 | mbfconst 23593 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
19 | 16, 17, 18 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) ∈ MblFn) |
20 | 5, 6 | fmptd 6540 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
21 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑦if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) | |
22 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) | |
23 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
24 | nffvmpt1 6352 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) | |
25 | 22, 23, 24 | nfbr 4843 | . . . . 5 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
26 | 25, 24, 22 | nfif 4251 | . . . 4 ⊢ Ⅎ𝑥if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)) |
27 | fveq2 6344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 × {0})‘𝑥) = ((𝐴 × {0})‘𝑦)) | |
28 | fveq2 6344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
29 | 27, 28 | breq12d 4809 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ ((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦))) |
30 | 29, 28, 27 | ifbieq12d 4249 | . . . 4 ⊢ (𝑥 = 𝑦 → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
31 | 21, 26, 30 | cbvmpt 4893 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑦 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
32 | 14, 19, 20, 15, 31 | mbfmax 23607 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) ∈ MblFn) |
33 | 11, 32 | eqeltrrd 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ifcif 4222 {csn 4313 class class class wbr 4796 ↦ cmpt 4873 × cxp 5256 dom cdm 5258 ⟶wf 6037 ‘cfv 6041 ℂcc 10118 ℝcr 10119 0cc0 10120 ≤ cle 10259 volcvol 23424 MblFncmbf 23574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-of 7054 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-2o 7722 df-oadd 7725 df-er 7903 df-map 8017 df-pm 8018 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8505 df-inf 8506 df-oi 8572 df-card 8947 df-cda 9174 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-n0 11477 df-z 11562 df-uz 11872 df-q 11974 df-rp 12018 df-xadd 12132 df-ioo 12364 df-ico 12366 df-icc 12367 df-fz 12512 df-fzo 12652 df-fl 12779 df-seq 12988 df-exp 13047 df-hash 13304 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-clim 14410 df-sum 14608 df-xmet 19933 df-met 19934 df-ovol 23425 df-vol 23426 df-mbf 23579 |
This theorem is referenced by: mbfposb 23611 mbfi1flimlem 23680 itgreval 23754 ibladdlem 23777 iblabslem 23785 mbfposadd 33762 ibladdnclem 33771 iblabsnclem 33778 itgmulc2nclem2 33782 |
Copyright terms: Public domain | W3C validator |