Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccl Structured version   Visualization version   GIF version

Theorem mccl 39231
Description: A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccl.kb 𝑘𝐵
mccl.a (𝜑𝐴 ∈ Fin)
mccl.b (𝜑𝐵 ∈ (ℕ0𝑚 𝐴))
Assertion
Ref Expression
mccl (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem mccl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 14353 . . . . . . . 8 (𝑎 = ∅ → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘 ∈ ∅ (𝑏𝑘))
21fveq2d 6152 . . . . . . 7 (𝑎 = ∅ → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)))
3 prodeq1 14564 . . . . . . 7 (𝑎 = ∅ → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘 ∈ ∅ (!‘(𝑏𝑘)))
42, 3oveq12d 6622 . . . . . 6 (𝑎 = ∅ → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))))
54eleq1d 2683 . . . . 5 (𝑎 = ∅ → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
65ralbidv 2980 . . . 4 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
7 oveq2 6612 . . . . 5 (𝑎 = ∅ → (ℕ0𝑚 𝑎) = (ℕ0𝑚 ∅))
87raleqdv 3133 . . . 4 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
96, 8bitrd 268 . . 3 (𝑎 = ∅ → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ))
10 sumeq1 14353 . . . . . . . 8 (𝑎 = 𝑐 → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘𝑐 (𝑏𝑘))
1110fveq2d 6152 . . . . . . 7 (𝑎 = 𝑐 → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘𝑐 (𝑏𝑘)))
12 prodeq1 14564 . . . . . . 7 (𝑎 = 𝑐 → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘𝑐 (!‘(𝑏𝑘)))
1311, 12oveq12d 6622 . . . . . 6 (𝑎 = 𝑐 → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))))
1413eleq1d 2683 . . . . 5 (𝑎 = 𝑐 → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
1514ralbidv 2980 . . . 4 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
16 oveq2 6612 . . . . 5 (𝑎 = 𝑐 → (ℕ0𝑚 𝑎) = (ℕ0𝑚 𝑐))
1716raleqdv 3133 . . . 4 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
1815, 17bitrd 268 . . 3 (𝑎 = 𝑐 → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ))
19 sumeq1 14353 . . . . . . . 8 (𝑎 = (𝑐 ∪ {𝑑}) → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘))
2019fveq2d 6152 . . . . . . 7 (𝑎 = (𝑐 ∪ {𝑑}) → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)))
21 prodeq1 14564 . . . . . . 7 (𝑎 = (𝑐 ∪ {𝑑}) → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘)))
2220, 21oveq12d 6622 . . . . . 6 (𝑎 = (𝑐 ∪ {𝑑}) → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))))
2322eleq1d 2683 . . . . 5 (𝑎 = (𝑐 ∪ {𝑑}) → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
2423ralbidv 2980 . . . 4 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
25 oveq2 6612 . . . . 5 (𝑎 = (𝑐 ∪ {𝑑}) → (ℕ0𝑚 𝑎) = (ℕ0𝑚 (𝑐 ∪ {𝑑})))
2625raleqdv 3133 . . . 4 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
2724, 26bitrd 268 . . 3 (𝑎 = (𝑐 ∪ {𝑑}) → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
28 sumeq1 14353 . . . . . . . 8 (𝑎 = 𝐴 → Σ𝑘𝑎 (𝑏𝑘) = Σ𝑘𝐴 (𝑏𝑘))
2928fveq2d 6152 . . . . . . 7 (𝑎 = 𝐴 → (!‘Σ𝑘𝑎 (𝑏𝑘)) = (!‘Σ𝑘𝐴 (𝑏𝑘)))
30 prodeq1 14564 . . . . . . 7 (𝑎 = 𝐴 → ∏𝑘𝑎 (!‘(𝑏𝑘)) = ∏𝑘𝐴 (!‘(𝑏𝑘)))
3129, 30oveq12d 6622 . . . . . 6 (𝑎 = 𝐴 → ((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))))
3231eleq1d 2683 . . . . 5 (𝑎 = 𝐴 → (((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
3332ralbidv 2980 . . . 4 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
34 oveq2 6612 . . . . 5 (𝑎 = 𝐴 → (ℕ0𝑚 𝑎) = (ℕ0𝑚 𝐴))
3534raleqdv 3133 . . . 4 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
3633, 35bitrd 268 . . 3 (𝑎 = 𝐴 → (∀𝑏 ∈ (ℕ0𝑚 𝑎)((!‘Σ𝑘𝑎 (𝑏𝑘)) / ∏𝑘𝑎 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑏 ∈ (ℕ0𝑚 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ))
37 sum0 14385 . . . . . . . . . 10 Σ𝑘 ∈ ∅ (𝑏𝑘) = 0
3837fveq2i 6151 . . . . . . . . 9 (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) = (!‘0)
39 fac0 13003 . . . . . . . . 9 (!‘0) = 1
4038, 39eqtri 2643 . . . . . . . 8 (!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) = 1
41 prod0 14598 . . . . . . . 8 𝑘 ∈ ∅ (!‘(𝑏𝑘)) = 1
4240, 41oveq12i 6616 . . . . . . 7 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) = (1 / 1)
43 1div1e1 10661 . . . . . . 7 (1 / 1) = 1
4442, 43eqtri 2643 . . . . . 6 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) = 1
45 1nn 10975 . . . . . 6 1 ∈ ℕ
4644, 45eqeltri 2694 . . . . 5 ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ
4746a1i 11 . . . 4 ((𝜑𝑏 ∈ (ℕ0𝑚 ∅)) → ((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ)
4847ralrimiva 2960 . . 3 (𝜑 → ∀𝑏 ∈ (ℕ0𝑚 ∅)((!‘Σ𝑘 ∈ ∅ (𝑏𝑘)) / ∏𝑘 ∈ ∅ (!‘(𝑏𝑘))) ∈ ℕ)
49 nfv 1840 . . . . . 6 𝑏(𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐)))
50 nfra1 2936 . . . . . 6 𝑏𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ
5149, 50nfan 1825 . . . . 5 𝑏((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ)
52 simpll 789 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → (𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))))
53 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
5453cbvsumv 14360 . . . . . . . . . . . . . . 15 Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑏𝑗)
5554a1i 11 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑏𝑗))
56 fveq1 6147 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝑏𝑗) = (𝑒𝑗))
5756sumeq2ad 39198 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → Σ𝑗𝑐 (𝑏𝑗) = Σ𝑗𝑐 (𝑒𝑗))
5855, 57eqtrd 2655 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → Σ𝑘𝑐 (𝑏𝑘) = Σ𝑗𝑐 (𝑒𝑗))
5958fveq2d 6152 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (!‘Σ𝑘𝑐 (𝑏𝑘)) = (!‘Σ𝑗𝑐 (𝑒𝑗)))
6053fveq2d 6152 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (!‘(𝑏𝑘)) = (!‘(𝑏𝑗)))
6160cbvprodv 14571 . . . . . . . . . . . . . 14 𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑏𝑗))
6261a1i 11 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → ∏𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑏𝑗)))
6356fveq2d 6152 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (!‘(𝑏𝑗)) = (!‘(𝑒𝑗)))
6463prodeq2ad 39225 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → ∏𝑗𝑐 (!‘(𝑏𝑗)) = ∏𝑗𝑐 (!‘(𝑒𝑗)))
6562, 64eqtrd 2655 . . . . . . . . . . . 12 (𝑏 = 𝑒 → ∏𝑘𝑐 (!‘(𝑏𝑘)) = ∏𝑗𝑐 (!‘(𝑒𝑗)))
6659, 65oveq12d 6622 . . . . . . . . . . 11 (𝑏 = 𝑒 → ((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) = ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))))
6766eleq1d 2683 . . . . . . . . . 10 (𝑏 = 𝑒 → (((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ))
6867cbvralv 3159 . . . . . . . . 9 (∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ ↔ ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
6968biimpi 206 . . . . . . . 8 (∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ → ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
7069ad2antlr 762 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ)
71 simpr 477 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑})))
72 mccl.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
7372ad3antrrr 765 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → 𝐴 ∈ Fin)
74 simprl 793 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → 𝑐𝐴)
7574ad2antrr 761 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → 𝑐𝐴)
76 simprr 795 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → 𝑑 ∈ (𝐴𝑐))
7776ad2antrr 761 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → 𝑑 ∈ (𝐴𝑐))
78 simpr 477 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑})))
79 fveq2 6148 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑒𝑗) = (𝑒𝑘))
8079cbvsumv 14360 . . . . . . . . . . . . . 14 Σ𝑗𝑐 (𝑒𝑗) = Σ𝑘𝑐 (𝑒𝑘)
8180fveq2i 6151 . . . . . . . . . . . . 13 (!‘Σ𝑗𝑐 (𝑒𝑗)) = (!‘Σ𝑘𝑐 (𝑒𝑘))
8279fveq2d 6152 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (!‘(𝑒𝑗)) = (!‘(𝑒𝑘)))
8382cbvprodv 14571 . . . . . . . . . . . . 13 𝑗𝑐 (!‘(𝑒𝑗)) = ∏𝑘𝑐 (!‘(𝑒𝑘))
8481, 83oveq12i 6616 . . . . . . . . . . . 12 ((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) = ((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘)))
8584eleq1i 2689 . . . . . . . . . . 11 (((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ ↔ ((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8685ralbii 2974 . . . . . . . . . 10 (∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ ↔ ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8786biimpi 206 . . . . . . . . 9 (∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ → ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8887ad2antlr 762 . . . . . . . 8 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑒𝑘)) / ∏𝑘𝑐 (!‘(𝑒𝑘))) ∈ ℕ)
8973, 75, 77, 78, 88mccllem 39230 . . . . . . 7 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑒 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑗𝑐 (𝑒𝑗)) / ∏𝑗𝑐 (!‘(𝑒𝑗))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9052, 70, 71, 89syl21anc 1322 . . . . . 6 ((((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) ∧ 𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9190ex 450 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) → (𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑})) → ((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
9251, 91ralrimi 2951 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ) → ∀𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ)
9392ex 450 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑 ∈ (𝐴𝑐))) → (∀𝑏 ∈ (ℕ0𝑚 𝑐)((!‘Σ𝑘𝑐 (𝑏𝑘)) / ∏𝑘𝑐 (!‘(𝑏𝑘))) ∈ ℕ → ∀𝑏 ∈ (ℕ0𝑚 (𝑐 ∪ {𝑑}))((!‘Σ𝑘 ∈ (𝑐 ∪ {𝑑})(𝑏𝑘)) / ∏𝑘 ∈ (𝑐 ∪ {𝑑})(!‘(𝑏𝑘))) ∈ ℕ))
949, 18, 27, 36, 48, 93, 72findcard2d 8146 . 2 (𝜑 → ∀𝑏 ∈ (ℕ0𝑚 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ)
95 mccl.b . 2 (𝜑𝐵 ∈ (ℕ0𝑚 𝐴))
96 nfcv 2761 . . . . . . . . 9 𝑘𝑏
97 mccl.kb . . . . . . . . 9 𝑘𝐵
9896, 97nfeq 2772 . . . . . . . 8 𝑘 𝑏 = 𝐵
99 fveq1 6147 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
10099a1d 25 . . . . . . . 8 (𝑏 = 𝐵 → (𝑘𝐴 → (𝑏𝑘) = (𝐵𝑘)))
10198, 100ralrimi 2951 . . . . . . 7 (𝑏 = 𝐵 → ∀𝑘𝐴 (𝑏𝑘) = (𝐵𝑘))
102101sumeq2d 14366 . . . . . 6 (𝑏 = 𝐵 → Σ𝑘𝐴 (𝑏𝑘) = Σ𝑘𝐴 (𝐵𝑘))
103102fveq2d 6152 . . . . 5 (𝑏 = 𝐵 → (!‘Σ𝑘𝐴 (𝑏𝑘)) = (!‘Σ𝑘𝐴 (𝐵𝑘)))
10499fveq2d 6152 . . . . . . . 8 (𝑏 = 𝐵 → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
105104a1d 25 . . . . . . 7 (𝑏 = 𝐵 → (𝑘𝐴 → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘))))
10698, 105ralrimi 2951 . . . . . 6 (𝑏 = 𝐵 → ∀𝑘𝐴 (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
107106prodeq2d 14577 . . . . 5 (𝑏 = 𝐵 → ∏𝑘𝐴 (!‘(𝑏𝑘)) = ∏𝑘𝐴 (!‘(𝐵𝑘)))
108103, 107oveq12d 6622 . . . 4 (𝑏 = 𝐵 → ((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))))
109108eleq1d 2683 . . 3 (𝑏 = 𝐵 → (((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ))
110109rspccva 3294 . 2 ((∀𝑏 ∈ (ℕ0𝑚 𝐴)((!‘Σ𝑘𝐴 (𝑏𝑘)) / ∏𝑘𝐴 (!‘(𝑏𝑘))) ∈ ℕ ∧ 𝐵 ∈ (ℕ0𝑚 𝐴)) → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
11194, 95, 110syl2anc 692 1 (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wnfc 2748  wral 2907  cdif 3552  cun 3553  wss 3555  c0 3891  {csn 4148  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  Fincfn 7899  0cc0 9880  1c1 9881   / cdiv 10628  cn 10964  0cn0 11236  !cfa 13000  Σcsu 14350  cprod 14560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-prod 14561
This theorem is referenced by:  etransclem24  39779  etransclem25  39780  etransclem26  39781  etransclem28  39783  etransclem35  39790  etransclem37  39792
  Copyright terms: Public domain W3C validator