Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccllem Structured version   Visualization version   GIF version

Theorem mccllem 39220
Description: * Induction step for mccl 39221. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccllem.a (𝜑𝐴 ∈ Fin)
mccllem.c (𝜑𝐶𝐴)
mccllem.d (𝜑𝐷 ∈ (𝐴𝐶))
mccllem.b (𝜑𝐵 ∈ (ℕ0𝑚 (𝐶 ∪ {𝐷})))
mccllem.6 (𝜑 → ∀𝑏 ∈ (ℕ0𝑚 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
Assertion
Ref Expression
mccllem (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑏,𝑘   𝐶,𝑏,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑏)   𝐷(𝑏)

Proof of Theorem mccllem
StepHypRef Expression
1 nfv 1845 . . . . 5 𝑘𝜑
2 nfcv 2767 . . . . 5 𝑘(!‘(𝐵𝐷))
3 mccllem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
4 mccllem.c . . . . . 6 (𝜑𝐶𝐴)
5 ssfi 8125 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶𝐴) → 𝐶 ∈ Fin)
63, 4, 5syl2anc 692 . . . . 5 (𝜑𝐶 ∈ Fin)
7 mccllem.d . . . . 5 (𝜑𝐷 ∈ (𝐴𝐶))
8 eldifn 3716 . . . . . 6 (𝐷 ∈ (𝐴𝐶) → ¬ 𝐷𝐶)
97, 8syl 17 . . . . 5 (𝜑 → ¬ 𝐷𝐶)
10 mccllem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℕ0𝑚 (𝐶 ∪ {𝐷})))
11 elmapi 7824 . . . . . . . . . 10 (𝐵 ∈ (ℕ0𝑚 (𝐶 ∪ {𝐷})) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1312adantr 481 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
14 elun1 3763 . . . . . . . . 9 (𝑘𝐶𝑘 ∈ (𝐶 ∪ {𝐷}))
1514adantl 482 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝑘 ∈ (𝐶 ∪ {𝐷}))
1613, 15ffvelrnd 6317 . . . . . . 7 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℕ0)
1716faccld 13008 . . . . . 6 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℕ)
1817nncnd 10981 . . . . 5 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℂ)
19 fveq2 6150 . . . . . 6 (𝑘 = 𝐷 → (𝐵𝑘) = (𝐵𝐷))
2019fveq2d 6154 . . . . 5 (𝑘 = 𝐷 → (!‘(𝐵𝑘)) = (!‘(𝐵𝐷)))
21 snidg 4182 . . . . . . . . . 10 (𝐷 ∈ (𝐴𝐶) → 𝐷 ∈ {𝐷})
227, 21syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ {𝐷})
23 elun2 3764 . . . . . . . . 9 (𝐷 ∈ {𝐷} → 𝐷 ∈ (𝐶 ∪ {𝐷}))
2422, 23syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶 ∪ {𝐷}))
2512, 24ffvelrnd 6317 . . . . . . 7 (𝜑 → (𝐵𝐷) ∈ ℕ0)
2625faccld 13008 . . . . . 6 (𝜑 → (!‘(𝐵𝐷)) ∈ ℕ)
2726nncnd 10981 . . . . 5 (𝜑 → (!‘(𝐵𝐷)) ∈ ℂ)
281, 2, 6, 7, 9, 18, 20, 27fprodsplitsn 14640 . . . 4 (𝜑 → ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘)) = (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))
2928oveq2d 6621 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
307eldifad 3572 . . . . . . . . . . . 12 (𝜑𝐷𝐴)
31 snssi 4313 . . . . . . . . . . . 12 (𝐷𝐴 → {𝐷} ⊆ 𝐴)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑 → {𝐷} ⊆ 𝐴)
334, 32unssd 3772 . . . . . . . . . 10 (𝜑 → (𝐶 ∪ {𝐷}) ⊆ 𝐴)
34 ssfi 8125 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝐶 ∪ {𝐷}) ⊆ 𝐴) → (𝐶 ∪ {𝐷}) ∈ Fin)
353, 33, 34syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐶 ∪ {𝐷}) ∈ Fin)
3612ffvelrnda 6316 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐶 ∪ {𝐷})) → (𝐵𝑘) ∈ ℕ0)
3735, 36fsumnn0cl 14395 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℕ0)
3837faccld 13008 . . . . . . 7 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℕ)
3938nncnd 10981 . . . . . 6 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℂ)
401, 6, 18fprodclf 14643 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ∈ ℂ)
4140, 27mulcld 10005 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ∈ ℂ)
4217nnne0d 11010 . . . . . . . 8 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ≠ 0)
436, 18, 42fprodn0 14629 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ≠ 0)
4426nnne0d 11010 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) ≠ 0)
4540, 27, 43, 44mulne0d 10624 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ≠ 0)
4639, 41, 45divcld 10746 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) ∈ ℂ)
4746mulid2d 10003 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
4847eqcomd 2632 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))))
496, 16fsumnn0cl 14395 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℕ0)
5049faccld 13008 . . . . . . . 8 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
5150nncnd 10981 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℂ)
52 nnne0 10998 . . . . . . . 8 ((!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5350, 52syl 17 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5451, 53dividd 10744 . . . . . 6 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = 1)
5554eqcomd 2632 . . . . 5 (𝜑 → 1 = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))))
5640, 27mulcomd 10006 . . . . . . 7 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) = ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘))))
5756oveq2d 6621 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5839, 27, 40, 44, 43divdiv1d 10777 . . . . . . 7 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5958eqcomd 2632 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
6057, 59eqtrd 2660 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
6155, 60oveq12d 6623 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6239, 27, 44divcld 10746 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) ∈ ℂ)
6351, 51, 62, 40, 53, 43divmul13d 10788 . . . 4 (𝜑 → (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6461, 63eqtrd 2660 . . 3 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6529, 48, 643eqtrd 2664 . 2 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6639, 27, 51, 44, 53divdiv1d 10777 . . . . 5 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
67 nfcsb1v 3535 . . . . . . . . . . 11 𝑘𝐷 / 𝑘(𝐵𝑘)
6816nn0cnd 11298 . . . . . . . . . . 11 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℂ)
69 csbeq1a 3528 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐵𝑘) = 𝐷 / 𝑘(𝐵𝑘))
70 csbfv 6191 . . . . . . . . . . . . 13 𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷)
7170a1i 11 . . . . . . . . . . . 12 (𝜑𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷))
7225nn0cnd 11298 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) ∈ ℂ)
7371, 72eqeltrd 2704 . . . . . . . . . . 11 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℂ)
741, 67, 6, 30, 9, 68, 69, 73fsumsplitsn 39193 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) = (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
7574oveq1d 6620 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)) = ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)))
7649nn0cnd 11298 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℂ)
7776, 73pncan2d 10339 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)) = 𝐷 / 𝑘(𝐵𝑘))
7875, 77, 713eqtrrd 2665 . . . . . . . 8 (𝜑 → (𝐵𝐷) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)))
7978fveq2d 6154 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) = (!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))))
8079oveq1d 6620 . . . . . 6 (𝜑 → ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘))))
8180oveq2d 6621 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
82 0zd 11334 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
8337nn0zd 11424 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ)
8449nn0zd 11424 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ)
8582, 83, 843jca 1240 . . . . . . . . 9 (𝜑 → (0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ))
8649nn0ge0d 11299 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑘𝐶 (𝐵𝑘))
8725nn0ge0d 11299 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐵𝐷))
8871eqcomd 2632 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) = 𝐷 / 𝑘(𝐵𝑘))
8987, 88breqtrd 4644 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐷 / 𝑘(𝐵𝑘))
9049nn0red 11297 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℝ)
9125nn0red 11297 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐷) ∈ ℝ)
9271, 91eqeltrd 2704 . . . . . . . . . . . 12 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℝ)
9390, 92addge01d 10560 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐷 / 𝑘(𝐵𝑘) ↔ Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘))))
9489, 93mpbid 222 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
9574eqcomd 2632 . . . . . . . . . 10 (𝜑 → (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) = Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9694, 95breqtrd 4644 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9785, 86, 96jca32 557 . . . . . . . 8 (𝜑 → ((0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ) ∧ (0 ≤ Σ𝑘𝐶 (𝐵𝑘) ∧ Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))))
98 elfz2 12272 . . . . . . . 8 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ↔ ((0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ) ∧ (0 ≤ Σ𝑘𝐶 (𝐵𝑘) ∧ Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))))
9997, 98sylibr 224 . . . . . . 7 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)))
100 bcval2 13029 . . . . . . 7 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
10199, 100syl 17 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
102101eqcomd 2632 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
10366, 81, 1023eqtrd 2664 . . . 4 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
104 bccl2 13047 . . . . 5 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
10599, 104syl 17 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
106103, 105eqeltrd 2704 . . 3 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) ∈ ℕ)
107 mccllem.6 . . . 4 (𝜑 → ∀𝑏 ∈ (ℕ0𝑚 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
108 ssun1 3759 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {𝐷})
109108a1i 11 . . . . 5 (𝜑𝐶 ⊆ (𝐶 ∪ {𝐷}))
110 elmapssres 7827 . . . . 5 ((𝐵 ∈ (ℕ0𝑚 (𝐶 ∪ {𝐷})) ∧ 𝐶 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐶) ∈ (ℕ0𝑚 𝐶))
11110, 109, 110syl2anc 692 . . . 4 (𝜑 → (𝐵𝐶) ∈ (ℕ0𝑚 𝐶))
112 fveq1 6149 . . . . . . . . . . 11 (𝑏 = (𝐵𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
113112adantr 481 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
114 fvres 6165 . . . . . . . . . . 11 (𝑘𝐶 → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
115114adantl 482 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
116113, 115eqtrd 2660 . . . . . . . . 9 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = (𝐵𝑘))
117116sumeq2dv 14362 . . . . . . . 8 (𝑏 = (𝐵𝐶) → Σ𝑘𝐶 (𝑏𝑘) = Σ𝑘𝐶 (𝐵𝑘))
118117fveq2d 6154 . . . . . . 7 (𝑏 = (𝐵𝐶) → (!‘Σ𝑘𝐶 (𝑏𝑘)) = (!‘Σ𝑘𝐶 (𝐵𝑘)))
119116fveq2d 6154 . . . . . . . 8 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
120119prodeq2dv 14573 . . . . . . 7 (𝑏 = (𝐵𝐶) → ∏𝑘𝐶 (!‘(𝑏𝑘)) = ∏𝑘𝐶 (!‘(𝐵𝑘)))
121118, 120oveq12d 6623 . . . . . 6 (𝑏 = (𝐵𝐶) → ((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
122121eleq1d 2688 . . . . 5 (𝑏 = (𝐵𝐶) → (((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ))
123122rspccva 3299 . . . 4 ((∀𝑏 ∈ (ℕ0𝑚 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ∧ (𝐵𝐶) ∈ (ℕ0𝑚 𝐶)) → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
124107, 111, 123syl2anc 692 . . 3 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
125106, 124nnmulcld 11013 . 2 (𝜑 → ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) ∈ ℕ)
12665, 125eqeltrd 2704 1 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  csb 3519  cdif 3557  cun 3558  wss 3560  {csn 4153   class class class wbr 4618  cres 5081  wf 5846  cfv 5850  (class class class)co 6605  𝑚 cmap 7803  Fincfn 7900  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  cle 10020  cmin 10211   / cdiv 10629  cn 10965  0cn0 11237  cz 11322  ...cfz 12265  !cfa 12997  Ccbc 13026  Σcsu 14345  cprod 14555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-fac 12998  df-bc 13027  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346  df-prod 14556
This theorem is referenced by:  mccl  39221
  Copyright terms: Public domain W3C validator