Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsppslem Structured version   Visualization version   GIF version

Theorem mclsppslem 32834
Description: The closure is closed under application of provable pre-statements. (Compare mclsax 32820.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclspps.d 𝐷 = (mDV‘𝑇)
mclspps.e 𝐸 = (mEx‘𝑇)
mclspps.c 𝐶 = (mCls‘𝑇)
mclspps.1 (𝜑𝑇 ∈ mFS)
mclspps.2 (𝜑𝐾𝐷)
mclspps.3 (𝜑𝐵𝐸)
mclspps.j 𝐽 = (mPPSt‘𝑇)
mclspps.l 𝐿 = (mSubst‘𝑇)
mclspps.v 𝑉 = (mVR‘𝑇)
mclspps.h 𝐻 = (mVH‘𝑇)
mclspps.w 𝑊 = (mVars‘𝑇)
mclspps.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
mclspps.5 (𝜑𝑆 ∈ ran 𝐿)
mclspps.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclspps.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclspps.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
mclsppslem.9 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
mclsppslem.10 (𝜑𝑠 ∈ ran 𝐿)
mclsppslem.11 (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
mclsppslem.12 (𝜑 → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
Assertion
Ref Expression
mclsppslem (𝜑 → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧,𝐻   𝑣,𝑉,𝑧   𝐾,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑇,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝐿,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑊,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦,𝑧   𝑀,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝑚,𝑂,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑧   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑚,𝑜,𝑠,𝑝)   𝐵(𝑧,𝑤)   𝐶(𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝑆(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝐾(𝑧,𝑤)   𝑂(𝑦,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑤,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)

Proof of Theorem mclsppslem
Dummy variables 𝑡 𝑢 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsppslem.10 . . . 4 (𝜑𝑠 ∈ ran 𝐿)
2 mclspps.l . . . . 5 𝐿 = (mSubst‘𝑇)
3 mclspps.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3msubf 32783 . . . 4 (𝑠 ∈ ran 𝐿𝑠:𝐸𝐸)
51, 4syl 17 . . 3 (𝜑𝑠:𝐸𝐸)
6 mclspps.1 . . . . . . . 8 (𝜑𝑇 ∈ mFS)
7 eqid 2824 . . . . . . . . 9 (mAx‘𝑇) = (mAx‘𝑇)
8 eqid 2824 . . . . . . . . 9 (mStat‘𝑇) = (mStat‘𝑇)
97, 8maxsta 32805 . . . . . . . 8 (𝑇 ∈ mFS → (mAx‘𝑇) ⊆ (mStat‘𝑇))
106, 9syl 17 . . . . . . 7 (𝜑 → (mAx‘𝑇) ⊆ (mStat‘𝑇))
11 eqid 2824 . . . . . . . 8 (mPreSt‘𝑇) = (mPreSt‘𝑇)
1211, 8mstapst 32798 . . . . . . 7 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
1310, 12sstrdi 3982 . . . . . 6 (𝜑 → (mAx‘𝑇) ⊆ (mPreSt‘𝑇))
14 mclsppslem.9 . . . . . 6 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
1513, 14sseldd 3971 . . . . 5 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
16 mclspps.d . . . . . 6 𝐷 = (mDV‘𝑇)
1716, 3, 11elmpst 32787 . . . . 5 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
1815, 17sylib 220 . . . 4 (𝜑 → ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
1918simp3d 1140 . . 3 (𝜑𝑝𝐸)
205, 19ffvelrnd 6855 . 2 (𝜑 → (𝑠𝑝) ∈ 𝐸)
21 fvco3 6763 . . . 4 ((𝑠:𝐸𝐸𝑝𝐸) → ((𝑆𝑠)‘𝑝) = (𝑆‘(𝑠𝑝)))
225, 19, 21syl2anc 586 . . 3 (𝜑 → ((𝑆𝑠)‘𝑝) = (𝑆‘(𝑠𝑝)))
23 mclspps.c . . . 4 𝐶 = (mCls‘𝑇)
24 mclspps.2 . . . 4 (𝜑𝐾𝐷)
25 mclspps.3 . . . 4 (𝜑𝐵𝐸)
26 mclspps.v . . . 4 𝑉 = (mVR‘𝑇)
27 mclspps.h . . . 4 𝐻 = (mVH‘𝑇)
28 mclspps.w . . . 4 𝑊 = (mVars‘𝑇)
29 mclspps.5 . . . . 5 (𝜑𝑆 ∈ ran 𝐿)
302msubco 32782 . . . . 5 ((𝑆 ∈ ran 𝐿𝑠 ∈ ran 𝐿) → (𝑆𝑠) ∈ ran 𝐿)
3129, 1, 30syl2anc 586 . . . 4 (𝜑 → (𝑆𝑠) ∈ ran 𝐿)
322, 3msubf 32783 . . . . . . . . 9 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
3329, 32syl 17 . . . . . . . 8 (𝜑𝑆:𝐸𝐸)
34 fco 6534 . . . . . . . 8 ((𝑆:𝐸𝐸𝑠:𝐸𝐸) → (𝑆𝑠):𝐸𝐸)
3533, 5, 34syl2anc 586 . . . . . . 7 (𝜑 → (𝑆𝑠):𝐸𝐸)
3635ffnd 6518 . . . . . 6 (𝜑 → (𝑆𝑠) Fn 𝐸)
3736adantr 483 . . . . 5 ((𝜑𝑐𝑜) → (𝑆𝑠) Fn 𝐸)
38 mclsppslem.11 . . . . . . . . 9 (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
395ffund 6521 . . . . . . . . . 10 (𝜑 → Fun 𝑠)
4017simp2bi 1142 . . . . . . . . . . . . . 14 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → (𝑜𝐸𝑜 ∈ Fin))
4115, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑜𝐸𝑜 ∈ Fin))
4241simpld 497 . . . . . . . . . . . 12 (𝜑𝑜𝐸)
4326, 3, 27mvhf 32809 . . . . . . . . . . . . 13 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
44 frn 6523 . . . . . . . . . . . . 13 (𝐻:𝑉𝐸 → ran 𝐻𝐸)
456, 43, 443syl 18 . . . . . . . . . . . 12 (𝜑 → ran 𝐻𝐸)
4642, 45unssd 4165 . . . . . . . . . . 11 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ 𝐸)
475fdmd 6526 . . . . . . . . . . 11 (𝜑 → dom 𝑠 = 𝐸)
4846, 47sseqtrrd 4011 . . . . . . . . . 10 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ dom 𝑠)
49 funimass3 6827 . . . . . . . . . 10 ((Fun 𝑠 ∧ (𝑜 ∪ ran 𝐻) ⊆ dom 𝑠) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))))
5039, 48, 49syl2anc 586 . . . . . . . . 9 (𝜑 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))))
5138, 50mpbid 234 . . . . . . . 8 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵))))
52 cnvco 5759 . . . . . . . . . 10 (𝑆𝑠) = (𝑠𝑆)
5352imaeq1i 5929 . . . . . . . . 9 ((𝑆𝑠) “ (𝐾𝐶𝐵)) = ((𝑠𝑆) “ (𝐾𝐶𝐵))
54 imaco 6107 . . . . . . . . 9 ((𝑠𝑆) “ (𝐾𝐶𝐵)) = (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))
5553, 54eqtri 2847 . . . . . . . 8 ((𝑆𝑠) “ (𝐾𝐶𝐵)) = (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))
5651, 55sseqtrrdi 4021 . . . . . . 7 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
5756unssad 4166 . . . . . 6 (𝜑𝑜 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
5857sselda 3970 . . . . 5 ((𝜑𝑐𝑜) → 𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
59 elpreima 6831 . . . . . 6 ((𝑆𝑠) Fn 𝐸 → (𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)) ↔ (𝑐𝐸 ∧ ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))))
6059simplbda 502 . . . . 5 (((𝑆𝑠) Fn 𝐸𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵))) → ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))
6137, 58, 60syl2anc 586 . . . 4 ((𝜑𝑐𝑜) → ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))
6236adantr 483 . . . . 5 ((𝜑𝑡𝑉) → (𝑆𝑠) Fn 𝐸)
6356unssbd 4167 . . . . . . 7 (𝜑 → ran 𝐻 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
6463adantr 483 . . . . . 6 ((𝜑𝑡𝑉) → ran 𝐻 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
65 ffn 6517 . . . . . . . 8 (𝐻:𝑉𝐸𝐻 Fn 𝑉)
666, 43, 653syl 18 . . . . . . 7 (𝜑𝐻 Fn 𝑉)
67 fnfvelrn 6851 . . . . . . 7 ((𝐻 Fn 𝑉𝑡𝑉) → (𝐻𝑡) ∈ ran 𝐻)
6866, 67sylan 582 . . . . . 6 ((𝜑𝑡𝑉) → (𝐻𝑡) ∈ ran 𝐻)
6964, 68sseldd 3971 . . . . 5 ((𝜑𝑡𝑉) → (𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
70 elpreima 6831 . . . . . 6 ((𝑆𝑠) Fn 𝐸 → ((𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑡) ∈ 𝐸 ∧ ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))))
7170simplbda 502 . . . . 5 (((𝑆𝑠) Fn 𝐸 ∧ (𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵))) → ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))
7262, 69, 71syl2anc 586 . . . 4 ((𝜑𝑡𝑉) → ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))
735adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → 𝑠:𝐸𝐸)
746, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝑉𝐸)
7574adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝐻:𝑉𝐸)
7618simp1d 1138 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑚𝐷𝑚 = 𝑚))
7776simpld 497 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑚𝐷)
7826, 16mdvval 32755 . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((𝑉 × 𝑉) ∖ I )
79 difss 4111 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 × 𝑉) ∖ I ) ⊆ (𝑉 × 𝑉)
8078, 79eqsstri 4004 . . . . . . . . . . . . . . . . . . 19 𝐷 ⊆ (𝑉 × 𝑉)
8177, 80sstrdi 3982 . . . . . . . . . . . . . . . . . 18 (𝜑𝑚 ⊆ (𝑉 × 𝑉))
8281ssbrd 5112 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑐𝑚𝑑𝑐(𝑉 × 𝑉)𝑑))
8382imp 409 . . . . . . . . . . . . . . . 16 ((𝜑𝑐𝑚𝑑) → 𝑐(𝑉 × 𝑉)𝑑)
84 brxp 5604 . . . . . . . . . . . . . . . 16 (𝑐(𝑉 × 𝑉)𝑑 ↔ (𝑐𝑉𝑑𝑉))
8583, 84sylib 220 . . . . . . . . . . . . . . 15 ((𝜑𝑐𝑚𝑑) → (𝑐𝑉𝑑𝑉))
8685simpld 497 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝑐𝑉)
8775, 86ffvelrnd 6855 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → (𝐻𝑐) ∈ 𝐸)
88 fvco3 6763 . . . . . . . . . . . . 13 ((𝑠:𝐸𝐸 ∧ (𝐻𝑐) ∈ 𝐸) → ((𝑆𝑠)‘(𝐻𝑐)) = (𝑆‘(𝑠‘(𝐻𝑐))))
8973, 87, 88syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → ((𝑆𝑠)‘(𝐻𝑐)) = (𝑆‘(𝑠‘(𝐻𝑐))))
9089fveq2d 6677 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) = (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))))
916adantr 483 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → 𝑇 ∈ mFS)
9229adantr 483 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → 𝑆 ∈ ran 𝐿)
9373, 87ffvelrnd 6855 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑠‘(𝐻𝑐)) ∈ 𝐸)
942, 3, 28, 27msubvrs 32811 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ (𝑠‘(𝐻𝑐)) ∈ 𝐸) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9591, 92, 93, 94syl3anc 1367 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9690, 95eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9796eleq2d 2901 . . . . . . . . 9 ((𝜑𝑐𝑚𝑑) → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ↔ 𝑎 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢)))))
98 eliun 4926 . . . . . . . . 9 (𝑎 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))) ↔ ∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))))
9997, 98syl6bb 289 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ↔ ∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢)))))
10085simprd 498 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝑑𝑉)
10175, 100ffvelrnd 6855 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → (𝐻𝑑) ∈ 𝐸)
102 fvco3 6763 . . . . . . . . . . . . 13 ((𝑠:𝐸𝐸 ∧ (𝐻𝑑) ∈ 𝐸) → ((𝑆𝑠)‘(𝐻𝑑)) = (𝑆‘(𝑠‘(𝐻𝑑))))
10373, 101, 102syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → ((𝑆𝑠)‘(𝐻𝑑)) = (𝑆‘(𝑠‘(𝐻𝑑))))
104103fveq2d 6677 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) = (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))))
10573, 101ffvelrnd 6855 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑠‘(𝐻𝑑)) ∈ 𝐸)
1062, 3, 28, 27msubvrs 32811 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ (𝑠‘(𝐻𝑑)) ∈ 𝐸) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
10791, 92, 105, 106syl3anc 1367 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
108104, 107eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
109108eleq2d 2901 . . . . . . . . 9 ((𝜑𝑐𝑚𝑑) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) ↔ 𝑏 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣)))))
110 eliun 4926 . . . . . . . . 9 (𝑏 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))) ↔ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))
111109, 110syl6bb 289 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) ↔ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
11299, 111anbi12d 632 . . . . . . 7 ((𝜑𝑐𝑚𝑑) → ((𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑)))) ↔ (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))))
113 reeanv 3370 . . . . . . . 8 (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) ↔ (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
114 simpll 765 . . . . . . . . . 10 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → 𝜑)
115 brxp 5604 . . . . . . . . . . . 12 (𝑢((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑))))𝑣 ↔ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))))
116 mclsppslem.12 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
117 breq12 5074 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑧𝑚𝑤𝑐𝑚𝑑))
118 simpl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑧 = 𝑐)
119118fveq2d 6677 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝐻𝑧) = (𝐻𝑐))
120119fveq2d 6677 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑠‘(𝐻𝑧)) = (𝑠‘(𝐻𝑐)))
121120fveq2d 6677 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑊‘(𝑠‘(𝐻𝑧))) = (𝑊‘(𝑠‘(𝐻𝑐))))
122 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑤 = 𝑑)
123122fveq2d 6677 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝐻𝑤) = (𝐻𝑑))
124123fveq2d 6677 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑠‘(𝐻𝑤)) = (𝑠‘(𝐻𝑑)))
125124fveq2d 6677 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑊‘(𝑠‘(𝐻𝑤))) = (𝑊‘(𝑠‘(𝐻𝑑))))
126121, 125xpeq12d 5589 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) = ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))))
127126sseq1d 4001 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑐𝑤 = 𝑑) → (((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀 ↔ ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
128117, 127imbi12d 347 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) ↔ (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)))
129128spc2gv 3604 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)))
130129el2v 3504 . . . . . . . . . . . . . . 15 (∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
131116, 130syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
132131imp 409 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)
133132ssbrd 5112 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑢((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑))))𝑣𝑢𝑀𝑣))
134115, 133syl5bir 245 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → ((𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))) → 𝑢𝑀𝑣))
135134imp 409 . . . . . . . . . 10 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → 𝑢𝑀𝑣)
136 vex 3500 . . . . . . . . . . . . 13 𝑢 ∈ V
137 vex 3500 . . . . . . . . . . . . 13 𝑣 ∈ V
138 breq12 5074 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥𝑀𝑦𝑢𝑀𝑣))
139 simpl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
140139fveq2d 6677 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐻𝑥) = (𝐻𝑢))
141140fveq2d 6677 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑆‘(𝐻𝑥)) = (𝑆‘(𝐻𝑢)))
142141fveq2d 6677 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑊‘(𝑆‘(𝐻𝑥))) = (𝑊‘(𝑆‘(𝐻𝑢))))
143142eleq2d 2901 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ↔ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢)))))
144 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
145144fveq2d 6677 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐻𝑦) = (𝐻𝑣))
146145fveq2d 6677 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑆‘(𝐻𝑦)) = (𝑆‘(𝐻𝑣)))
147146fveq2d 6677 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑊‘(𝑆‘(𝐻𝑦))) = (𝑊‘(𝑆‘(𝐻𝑣))))
148147eleq2d 2901 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))) ↔ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
149138, 143, 1483anbi123d 1432 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))) ↔ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))))
150149anbi2d 630 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) ↔ (𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))))
151150imbi1d 344 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏) ↔ ((𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))) → 𝑎𝐾𝑏)))
152 mclspps.8 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
153136, 137, 151, 152vtocl2 3564 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))) → 𝑎𝐾𝑏)
1541533exp2 1350 . . . . . . . . . . 11 (𝜑 → (𝑢𝑀𝑣 → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))) → 𝑎𝐾𝑏))))
155154imp4b 424 . . . . . . . . . 10 ((𝜑𝑢𝑀𝑣) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
156114, 135, 155syl2anc 586 . . . . . . . . 9 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
157156rexlimdvva 3297 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
158113, 157syl5bir 245 . . . . . . 7 ((𝜑𝑐𝑚𝑑) → ((∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
159112, 158sylbid 242 . . . . . 6 ((𝜑𝑐𝑚𝑑) → ((𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑)))) → 𝑎𝐾𝑏))
160159exp4b 433 . . . . 5 (𝜑 → (𝑐𝑚𝑑 → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) → 𝑎𝐾𝑏))))
1611603imp2 1345 . . . 4 ((𝜑 ∧ (𝑐𝑚𝑑𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))))) → 𝑎𝐾𝑏)
16216, 3, 23, 6, 24, 25, 7, 2, 26, 27, 28, 14, 31, 61, 72, 161mclsax 32820 . . 3 (𝜑 → ((𝑆𝑠)‘𝑝) ∈ (𝐾𝐶𝐵))
16322, 162eqeltrrd 2917 . 2 (𝜑 → (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))
16433ffnd 6518 . . 3 (𝜑𝑆 Fn 𝐸)
165 elpreima 6831 . . 3 (𝑆 Fn 𝐸 → ((𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝑠𝑝) ∈ 𝐸 ∧ (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))))
166164, 165syl 17 . 2 (𝜑 → ((𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝑠𝑝) ∈ 𝐸 ∧ (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))))
16720, 163, 166mpbir2and 711 1 (𝜑 → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1534   = wceq 1536  wcel 2113  wrex 3142  Vcvv 3497  cdif 3936  cun 3937  wss 3939  cotp 4578   ciun 4922   class class class wbr 5069   I cid 5462   × cxp 5556  ccnv 5557  dom cdm 5558  ran crn 5559  cima 5561  ccom 5562  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  Fincfn 8512  mVRcmvar 32712  mAxcmax 32716  mExcmex 32718  mDVcmdv 32719  mVarscmvrs 32720  mSubstcmsub 32722  mVHcmvh 32723  mPreStcmpst 32724  mStatcmsta 32726  mFScmfs 32727  mClscmcls 32728  mPPStcmpps 32729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-word 13865  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-gsum 16719  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-frmd 18017  df-vrmd 18018  df-mrex 32737  df-mex 32738  df-mdv 32739  df-mvrs 32740  df-mrsub 32741  df-msub 32742  df-mvh 32743  df-mpst 32744  df-msr 32745  df-msta 32746  df-mfs 32747  df-mcls 32748
This theorem is referenced by:  mclspps  32835
  Copyright terms: Public domain W3C validator