Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr3 Structured version   Visualization version   GIF version

Theorem mdbr3 29023
 Description: Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr3 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdbr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdbr 29020 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
2 chincl 28225 . . . . . . . 8 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
3 inss2 3817 . . . . . . . . 9 (𝑥𝐵) ⊆ 𝐵
4 sseq1 3610 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → (𝑦𝐵 ↔ (𝑥𝐵) ⊆ 𝐵))
5 oveq1 6617 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 𝐴) = ((𝑥𝐵) ∨ 𝐴))
65ineq1d 3796 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → ((𝑦 𝐴) ∩ 𝐵) = (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵))
7 oveq1 6617 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 (𝐴𝐵)) = ((𝑥𝐵) ∨ (𝐴𝐵)))
86, 7eqeq12d 2636 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → (((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)) ↔ (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
94, 8imbi12d 334 . . . . . . . . . 10 (𝑦 = (𝑥𝐵) → ((𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ((𝑥𝐵) ⊆ 𝐵 → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
109rspcv 3294 . . . . . . . . 9 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → ((𝑥𝐵) ⊆ 𝐵 → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
113, 10mpii 46 . . . . . . . 8 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
122, 11syl 17 . . . . . . 7 ((𝑥C𝐵C ) → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
1312ex 450 . . . . . 6 (𝑥C → (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
1413com3l 89 . . . . 5 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → (𝑥C → (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)))))
1514ralrimdv 2963 . . . 4 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) → ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
16 dfss 3574 . . . . . . . . . . 11 (𝑥𝐵𝑥 = (𝑥𝐵))
1716biimpi 206 . . . . . . . . . 10 (𝑥𝐵𝑥 = (𝑥𝐵))
1817oveq1d 6625 . . . . . . . . 9 (𝑥𝐵 → (𝑥 𝐴) = ((𝑥𝐵) ∨ 𝐴))
1918ineq1d 3796 . . . . . . . 8 (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵))
2017oveq1d 6625 . . . . . . . 8 (𝑥𝐵 → (𝑥 (𝐴𝐵)) = ((𝑥𝐵) ∨ (𝐴𝐵)))
2119, 20eqeq12d 2636 . . . . . . 7 (𝑥𝐵 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
2221biimprcd 240 . . . . . 6 ((((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
2322ralimi 2947 . . . . 5 (∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
24 sseq1 3610 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
25 oveq1 6617 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
2625ineq1d 3796 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
27 oveq1 6617 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
2826, 27eqeq12d 2636 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
2924, 28imbi12d 334 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
3029cbvralv 3162 . . . . 5 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
3123, 30sylib 208 . . . 4 (∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵)) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
3215, 31impbid1 215 . . 3 (𝐵C → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
3332adantl 482 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))) ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
341, 33bitrd 268 1 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (((𝑥𝐵) ∨ 𝐴) ∩ 𝐵) = ((𝑥𝐵) ∨ (𝐴𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907   ∩ cin 3558   ⊆ wss 3559   class class class wbr 4618  (class class class)co 6610   Cℋ cch 27653   ∨ℋ chj 27657   𝑀ℋ cmd 27690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-i2m1 9955  ax-1ne0 9956  ax-rrecex 9959  ax-cnre 9960  ax-hilex 27723  ax-hfvadd 27724  ax-hv0cl 27727  ax-hfvmul 27729 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-map 7811  df-nn 10972  df-hlim 27696  df-sh 27931  df-ch 27945  df-md 29006 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator