![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > mdbr4 | Structured version Visualization version GIF version |
Description: Binary relation expressing the modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdbr4 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdbr2 29462 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) | |
2 | chincl 28665 | . . . . . . . 8 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝑥 ∩ 𝐵) ∈ Cℋ ) | |
3 | inss2 3975 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐵) ⊆ 𝐵 | |
4 | sseq1 3765 | . . . . . . . . . . 11 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → (𝑦 ⊆ 𝐵 ↔ (𝑥 ∩ 𝐵) ⊆ 𝐵)) | |
5 | oveq1 6818 | . . . . . . . . . . . . 13 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → (𝑦 ∨ℋ 𝐴) = ((𝑥 ∩ 𝐵) ∨ℋ 𝐴)) | |
6 | 5 | ineq1d 3954 | . . . . . . . . . . . 12 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵)) |
7 | oveq1 6818 | . . . . . . . . . . . 12 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) = ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))) | |
8 | 6, 7 | sseq12d 3773 | . . . . . . . . . . 11 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → (((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ↔ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
9 | 4, 8 | imbi12d 333 | . . . . . . . . . 10 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((𝑥 ∩ 𝐵) ⊆ 𝐵 → (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))))) |
10 | 9 | rspcv 3443 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐵) ∈ Cℋ → (∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) → ((𝑥 ∩ 𝐵) ⊆ 𝐵 → (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))))) |
11 | 3, 10 | mpii 46 | . . . . . . . 8 ⊢ ((𝑥 ∩ 𝐵) ∈ Cℋ → (∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) → (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
12 | 2, 11 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) → (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
13 | 12 | ex 449 | . . . . . 6 ⊢ (𝑥 ∈ Cℋ → (𝐵 ∈ Cℋ → (∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) → (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))))) |
14 | 13 | com3l 89 | . . . . 5 ⊢ (𝐵 ∈ Cℋ → (∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) → (𝑥 ∈ Cℋ → (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))))) |
15 | 14 | ralrimdv 3104 | . . . 4 ⊢ (𝐵 ∈ Cℋ → (∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) → ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
16 | dfss 3728 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝐵 ↔ 𝑥 = (𝑥 ∩ 𝐵)) | |
17 | 16 | biimpi 206 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ 𝐵 → 𝑥 = (𝑥 ∩ 𝐵)) |
18 | 17 | oveq1d 6826 | . . . . . . . . 9 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ∨ℋ 𝐴) = ((𝑥 ∩ 𝐵) ∨ℋ 𝐴)) |
19 | 18 | ineq1d 3954 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵)) |
20 | 17 | oveq1d 6826 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))) |
21 | 19, 20 | sseq12d 3773 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
22 | 21 | biimprcd 240 | . . . . . 6 ⊢ ((((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
23 | 22 | ralimi 3088 | . . . . 5 ⊢ (∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)) → ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
24 | sseq1 3765 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) | |
25 | oveq1 6818 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∨ℋ 𝐴) = (𝑦 ∨ℋ 𝐴)) | |
26 | 25 | ineq1d 3954 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ 𝐴) ∩ 𝐵)) |
27 | oveq1 6818 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) | |
28 | 26, 27 | sseq12d 3773 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
29 | 24, 28 | imbi12d 333 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
30 | 29 | cbvralv 3308 | . . . . 5 ⊢ (∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
31 | 23, 30 | sylib 208 | . . . 4 ⊢ (∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)) → ∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
32 | 15, 31 | impbid1 215 | . . 3 ⊢ (𝐵 ∈ Cℋ → (∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
33 | 32 | adantl 473 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∀𝑦 ∈ Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
34 | 1, 33 | bitrd 268 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ∩ cin 3712 ⊆ wss 3713 class class class wbr 4802 (class class class)co 6811 Cℋ cch 28093 ∨ℋ chj 28097 𝑀ℋ cmd 28130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-inf2 8709 ax-cc 9447 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-pre-sup 10204 ax-addf 10205 ax-mulf 10206 ax-hilex 28163 ax-hfvadd 28164 ax-hvcom 28165 ax-hvass 28166 ax-hv0cl 28167 ax-hvaddid 28168 ax-hfvmul 28169 ax-hvmulid 28170 ax-hvmulass 28171 ax-hvdistr1 28172 ax-hvdistr2 28173 ax-hvmul0 28174 ax-hfi 28243 ax-his1 28246 ax-his2 28247 ax-his3 28248 ax-his4 28249 ax-hcompl 28366 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-iin 4673 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-se 5224 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-isom 6056 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-of 7060 df-om 7229 df-1st 7331 df-2nd 7332 df-supp 7462 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-2o 7728 df-oadd 7731 df-omul 7732 df-er 7909 df-map 8023 df-pm 8024 df-ixp 8073 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-fsupp 8439 df-fi 8480 df-sup 8511 df-inf 8512 df-oi 8578 df-card 8953 df-acn 8956 df-cda 9180 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-div 10875 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-n0 11483 df-z 11568 df-dec 11684 df-uz 11878 df-q 11980 df-rp 12024 df-xneg 12137 df-xadd 12138 df-xmul 12139 df-ioo 12370 df-ico 12372 df-icc 12373 df-fz 12518 df-fzo 12658 df-fl 12785 df-seq 12994 df-exp 13053 df-hash 13310 df-cj 14036 df-re 14037 df-im 14038 df-sqrt 14172 df-abs 14173 df-clim 14416 df-rlim 14417 df-sum 14614 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16154 df-mulr 16155 df-starv 16156 df-sca 16157 df-vsca 16158 df-ip 16159 df-tset 16160 df-ple 16161 df-ds 16164 df-unif 16165 df-hom 16166 df-cco 16167 df-rest 16283 df-topn 16284 df-0g 16302 df-gsum 16303 df-topgen 16304 df-pt 16305 df-prds 16308 df-xrs 16362 df-qtop 16367 df-imas 16368 df-xps 16370 df-mre 16446 df-mrc 16447 df-acs 16449 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-submnd 17535 df-mulg 17740 df-cntz 17948 df-cmn 18393 df-psmet 19938 df-xmet 19939 df-met 19940 df-bl 19941 df-mopn 19942 df-fbas 19943 df-fg 19944 df-cnfld 19947 df-top 20899 df-topon 20916 df-topsp 20937 df-bases 20950 df-cld 21023 df-ntr 21024 df-cls 21025 df-nei 21102 df-cn 21231 df-cnp 21232 df-lm 21233 df-haus 21319 df-tx 21565 df-hmeo 21758 df-fil 21849 df-fm 21941 df-flim 21942 df-flf 21943 df-xms 22324 df-ms 22325 df-tms 22326 df-cfil 23251 df-cau 23252 df-cmet 23253 df-grpo 27654 df-gid 27655 df-ginv 27656 df-gdiv 27657 df-ablo 27706 df-vc 27721 df-nv 27754 df-va 27757 df-ba 27758 df-sm 27759 df-0v 27760 df-vs 27761 df-nmcv 27762 df-ims 27763 df-dip 27863 df-ssp 27884 df-ph 27975 df-cbn 28026 df-hnorm 28132 df-hba 28133 df-hvsub 28135 df-hlim 28136 df-hcau 28137 df-sh 28371 df-ch 28385 df-oc 28416 df-ch0 28417 df-shs 28474 df-chj 28476 df-md 29446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |