MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegldg Structured version   Visualization version   GIF version

Theorem mdegldg 24663
Description: A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
mdegldg.y 𝑌 = (0g𝑃)
Assertion
Ref Expression
mdegldg ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   𝑌(𝑥,,𝑚)   0 (𝑚)

Proof of Theorem mdegldg
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 24660 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
873ad2ant2 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
92, 3mplrcl 20273 . . . . . . . 8 (𝐹𝐵𝐼 ∈ V)
1093ad2ant2 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐼 ∈ V)
115, 6tdeglem1 24655 . . . . . . 7 (𝐼 ∈ V → 𝐻:𝐴⟶ℕ0)
1210, 11syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻:𝐴⟶ℕ0)
1312ffund 6521 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → Fun 𝐻)
14 simp2 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝐵)
15 simp1 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑅 ∈ Ring)
162, 3, 4, 14, 15mplelsfi 20274 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 finSupp 0 )
1716fsuppimpd 8843 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ∈ Fin)
18 imafi 8820 . . . . 5 ((Fun 𝐻 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
1913, 17, 18syl2anc 586 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
20 simp3 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝑌)
21 mdegldg.y . . . . . . . 8 𝑌 = (0g𝑃)
22 ringgrp 19305 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
23223ad2ant1 1129 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑅 ∈ Grp)
242, 5, 4, 21, 10, 23mpl0 20224 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑌 = (𝐴 × { 0 }))
2520, 24neeqtrd 3088 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 ≠ (𝐴 × { 0 }))
26 eqid 2824 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
272, 26, 3, 5, 14mplelf 20216 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹:𝐴⟶(Base‘𝑅))
2827ffnd 6518 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 Fn 𝐴)
294fvexi 6687 . . . . . . . 8 0 ∈ V
30 ovex 7192 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
315, 30rabex2 5240 . . . . . . . . 9 𝐴 ∈ V
32 fnsuppeq0 7861 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3331, 32mp3an2 1445 . . . . . . . 8 ((𝐹 Fn 𝐴0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3428, 29, 33sylancl 588 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3534necon3bid 3063 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) ≠ ∅ ↔ 𝐹 ≠ (𝐴 × { 0 })))
3625, 35mpbird 259 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ≠ ∅)
3712ffnd 6518 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻 Fn 𝐴)
38 suppssdm 7846 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3938, 27fssdm 6533 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ⊆ 𝐴)
40 fnimaeq0 6484 . . . . . . 7 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4137, 39, 40syl2anc 586 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4241necon3bid 3063 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) ≠ ∅ ↔ (𝐹 supp 0 ) ≠ ∅))
4336, 42mpbird 259 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ≠ ∅)
44 imassrn 5943 . . . . . 6 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
4512frnd 6524 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ran 𝐻 ⊆ ℕ0)
4644, 45sstrid 3981 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℕ0)
47 nn0ssre 11904 . . . . . 6 0 ⊆ ℝ
48 ressxr 10688 . . . . . 6 ℝ ⊆ ℝ*
4947, 48sstri 3979 . . . . 5 0 ⊆ ℝ*
5046, 49sstrdi 3982 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
51 xrltso 12537 . . . . 5 < Or ℝ*
52 fisupcl 8936 . . . . 5 (( < Or ℝ* ∧ ((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5351, 52mpan 688 . . . 4 (((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5419, 43, 50, 53syl3anc 1367 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
558, 54eqeltrd 2916 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )))
5637, 39fvelimabd 6741 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹)))
57 rexsupp 7851 . . . . 5 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5831, 29, 57mp3an23 1449 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5928, 58syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
6056, 59bitrd 281 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
6155, 60mpbid 234 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142  {crab 3145  Vcvv 3497  wss 3939  c0 4294  {csn 4570  cmpt 5149   Or wor 5476   × cxp 5556  ccnv 5557  ran crn 5559  cima 5561  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159   supp csupp 7833  m cmap 8409  Fincfn 8512  supcsup 8907  cr 10539  *cxr 10677   < clt 10678  cn 11641  0cn0 11900  Basecbs 16486  0gc0g 16716   Σg cgsu 16717  Grpcgrp 18106  Ringcrg 19300   mPoly cmpl 20136  fldccnfld 20548   mDeg cmdg 24650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-0g 16718  df-gsum 16719  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-subg 18279  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-psr 20139  df-mpl 20141  df-cnfld 20549  df-mdeg 24652
This theorem is referenced by:  mdegnn0cl  24668  deg1ldg  24689
  Copyright terms: Public domain W3C validator