MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegleb Structured version   Visualization version   GIF version

Theorem mdegleb 23745
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0𝑚 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegleb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(𝑥,,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐺(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   0 (𝑚)

Proof of Theorem mdegleb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0𝑚 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 23744 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
87adantr 481 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
98breq1d 4628 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺))
10 imassrn 5441 . . . 4 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
112, 3mplrcl 19422 . . . . . . . 8 (𝐹𝐵𝐼 ∈ V)
1211adantr 481 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐼 ∈ V)
135, 6tdeglem1 23739 . . . . . . 7 (𝐼 ∈ V → 𝐻:𝐴⟶ℕ0)
1412, 13syl 17 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻:𝐴⟶ℕ0)
15 frn 6015 . . . . . 6 (𝐻:𝐴⟶ℕ0 → ran 𝐻 ⊆ ℕ0)
1614, 15syl 17 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℕ0)
17 nn0ssre 11248 . . . . . 6 0 ⊆ ℝ
18 ressxr 10035 . . . . . 6 ℝ ⊆ ℝ*
1917, 18sstri 3596 . . . . 5 0 ⊆ ℝ*
2016, 19syl6ss 3599 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℝ*)
2110, 20syl5ss 3598 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
22 supxrleub 12107 . . 3 (((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2321, 22sylancom 700 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
24 ffn 6007 . . . . 5 (𝐻:𝐴⟶ℕ0𝐻 Fn 𝐴)
2514, 24syl 17 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻 Fn 𝐴)
26 suppssdm 7260 . . . . 5 (𝐹 supp 0 ) ⊆ dom 𝐹
27 eqid 2621 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
28 simpl 473 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹𝐵)
292, 27, 3, 5, 28mplelf 19365 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹:𝐴⟶(Base‘𝑅))
30 fdm 6013 . . . . . 6 (𝐹:𝐴⟶(Base‘𝑅) → dom 𝐹 = 𝐴)
3129, 30syl 17 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → dom 𝐹 = 𝐴)
3226, 31syl5sseq 3637 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐹 supp 0 ) ⊆ 𝐴)
33 breq1 4621 . . . . 5 (𝑦 = (𝐻𝑥) → (𝑦𝐺 ↔ (𝐻𝑥) ≤ 𝐺))
3433ralima 6458 . . . 4 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
3525, 32, 34syl2anc 692 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
36 ffn 6007 . . . . . . . 8 (𝐹:𝐴⟶(Base‘𝑅) → 𝐹 Fn 𝐴)
3729, 36syl 17 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹 Fn 𝐴)
38 ovex 6638 . . . . . . . . . 10 (ℕ0𝑚 𝐼) ∈ V
3938rabex 4778 . . . . . . . . 9 {𝑚 ∈ (ℕ0𝑚 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin} ∈ V
4039a1i 11 . . . . . . . 8 ((𝐹𝐵𝐺 ∈ ℝ*) → {𝑚 ∈ (ℕ0𝑚 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin} ∈ V)
415, 40syl5eqel 2702 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐴 ∈ V)
42 fvex 6163 . . . . . . . . 9 (0g𝑅) ∈ V
434, 42eqeltri 2694 . . . . . . . 8 0 ∈ V
4443a1i 11 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 0 ∈ V)
45 elsuppfn 7255 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 )))
46 fvex 6163 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
4746biantrur 527 . . . . . . . . . . 11 ((𝐹𝑥) ≠ 0 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
48 eldifsn 4292 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (V ∖ { 0 }) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
4947, 48bitr4i 267 . . . . . . . . . 10 ((𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) ∈ (V ∖ { 0 }))
5049a1i 11 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) ∈ (V ∖ { 0 })))
5150anbi2d 739 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
5245, 51bitrd 268 . . . . . . 7 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
5337, 41, 44, 52syl3anc 1323 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
5453imbi1d 331 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺)))
55 impexp 462 . . . . . 6 (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)))
56 con34b 306 . . . . . . . 8 (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })))
57 simplr 791 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → 𝐺 ∈ ℝ*)
5814ffvelrnda 6320 . . . . . . . . . . . 12 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℕ0)
5919, 58sseldi 3585 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
60 xrltnle 10057 . . . . . . . . . . 11 ((𝐺 ∈ ℝ* ∧ (𝐻𝑥) ∈ ℝ*) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
6157, 59, 60syl2anc 692 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
6261bicomd 213 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐻𝑥) ≤ 𝐺𝐺 < (𝐻𝑥)))
63 ianor 509 . . . . . . . . . . 11 (¬ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
6463, 48xchnxbir 323 . . . . . . . . . 10 (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
65 orcom 402 . . . . . . . . . . . 12 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
6646notnoti 137 . . . . . . . . . . . . 13 ¬ ¬ (𝐹𝑥) ∈ V
6766biorfi 422 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
68 nne 2794 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0 )
6965, 67, 683bitr2i 288 . . . . . . . . . . 11 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 )
7069a1i 11 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 ))
7164, 70syl5bb 272 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (𝐹𝑥) = 0 ))
7262, 71imbi12d 334 . . . . . . . 8 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
7356, 72syl5bb 272 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
7473pm5.74da 722 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
7555, 74syl5bb 272 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
7654, 75bitrd 268 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
7776ralbidv2 2979 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
7835, 77bitrd 268 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
799, 23, 783bitrd 294 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  {crab 2911  Vcvv 3189  cdif 3556  wss 3559  {csn 4153   class class class wbr 4618  cmpt 4678  ccnv 5078  dom cdm 5079  ran crn 5080  cima 5082   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610   supp csupp 7247  𝑚 cmap 7809  Fincfn 7907  supcsup 8298  cr 9887  *cxr 10025   < clt 10026  cle 10027  cn 10972  0cn0 11244  Basecbs 15792  0gc0g 16032   Σg cgsu 16033   mPoly cmpl 19285  fldccnfld 19678   mDeg cmdg 23734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-0g 16034  df-gsum 16035  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-grp 17357  df-minusg 17358  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-psr 19288  df-mpl 19290  df-cnfld 19679  df-mdeg 23736
This theorem is referenced by:  mdeglt  23746  mdegaddle  23755  mdegvscale  23756  mdegle0  23758  mdegmullem  23759  deg1leb  23776
  Copyright terms: Public domain W3C validator