MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegpropd Structured version   Visualization version   GIF version

Theorem mdegpropd 24680
Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegpropd.b1 (𝜑𝐵 = (Base‘𝑅))
mdegpropd.b2 (𝜑𝐵 = (Base‘𝑆))
mdegpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
mdegpropd (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem mdegpropd
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegpropd.b1 . . . 4 (𝜑𝐵 = (Base‘𝑅))
2 mdegpropd.b2 . . . 4 (𝜑𝐵 = (Base‘𝑆))
3 mdegpropd.p . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
41, 2, 3mplbaspropd 20407 . . 3 (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
51, 2, 3grpidpropd 17874 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝑆))
65oveq2d 7174 . . . . 5 (𝜑 → (𝑐 supp (0g𝑅)) = (𝑐 supp (0g𝑆)))
76imaeq2d 5931 . . . 4 (𝜑 → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑅))) = ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑆))))
87supeq1d 8912 . . 3 (𝜑 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑅))), ℝ*, < ) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑆))), ℝ*, < ))
94, 8mpteq12dv 5153 . 2 (𝜑 → (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑅))), ℝ*, < )) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑆))), ℝ*, < )))
10 eqid 2823 . . 3 (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑅)
11 eqid 2823 . . 3 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
12 eqid 2823 . . 3 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
13 eqid 2823 . . 3 (0g𝑅) = (0g𝑅)
14 eqid 2823 . . 3 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
15 eqid 2823 . . 3 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
1610, 11, 12, 13, 14, 15mdegfval 24658 . 2 (𝐼 mDeg 𝑅) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑅))), ℝ*, < ))
17 eqid 2823 . . 3 (𝐼 mDeg 𝑆) = (𝐼 mDeg 𝑆)
18 eqid 2823 . . 3 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
19 eqid 2823 . . 3 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
20 eqid 2823 . . 3 (0g𝑆) = (0g𝑆)
2117, 18, 19, 20, 14, 15mdegfval 24658 . 2 (𝐼 mDeg 𝑆) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑆))), ℝ*, < ))
229, 16, 213eqtr4g 2883 1 (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3144  cmpt 5148  ccnv 5556  cima 5560  cfv 6357  (class class class)co 7158   supp csupp 7832  m cmap 8408  Fincfn 8511  supcsup 8906  *cxr 10676   < clt 10677  cn 11640  0cn0 11900  Basecbs 16485  +gcplusg 16567  0gc0g 16715   Σg cgsu 16716   mPoly cmpl 20135  fldccnfld 20547   mDeg cmdg 24649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-tset 16586  df-0g 16717  df-psr 20138  df-mpl 20140  df-mdeg 24651
This theorem is referenced by:  deg1propd  24682
  Copyright terms: Public domain W3C validator