MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegvsca Structured version   Visualization version   GIF version

Theorem mdegvsca 23740
Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegvsca.b 𝐵 = (Base‘𝑌)
mdegvsca.e 𝐸 = (RLReg‘𝑅)
mdegvsca.p · = ( ·𝑠𝑌)
mdegvsca.f (𝜑𝐹𝐸)
mdegvsca.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegvsca (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷𝐺))

Proof of Theorem mdegvsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . 7 𝑌 = (𝐼 mPoly 𝑅)
2 mdegvsca.p . . . . . . 7 · = ( ·𝑠𝑌)
3 eqid 2621 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 mdegvsca.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2621 . . . . . . 7 (.r𝑅) = (.r𝑅)
6 eqid 2621 . . . . . . 7 {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
7 mdegvsca.e . . . . . . . . 9 𝐸 = (RLReg‘𝑅)
87, 3rrgss 19211 . . . . . . . 8 𝐸 ⊆ (Base‘𝑅)
9 mdegvsca.f . . . . . . . 8 (𝜑𝐹𝐸)
108, 9sseldi 3581 . . . . . . 7 (𝜑𝐹 ∈ (Base‘𝑅))
11 mdegvsca.g . . . . . . 7 (𝜑𝐺𝐵)
121, 2, 3, 4, 5, 6, 10, 11mplvsca 19366 . . . . . 6 (𝜑 → (𝐹 · 𝐺) = (({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘𝑓 (.r𝑅)𝐺))
1312oveq1d 6619 . . . . 5 (𝜑 → ((𝐹 · 𝐺) supp (0g𝑅)) = ((({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘𝑓 (.r𝑅)𝐺) supp (0g𝑅)))
14 eqid 2621 . . . . . 6 (0g𝑅) = (0g𝑅)
15 ovex 6632 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
1615rabex 4773 . . . . . . 7 {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V)
18 mdegaddle.r . . . . . 6 (𝜑𝑅 ∈ Ring)
191, 3, 4, 6, 11mplelf 19352 . . . . . 6 (𝜑𝐺:{𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
207, 3, 5, 14, 17, 18, 9, 19rrgsupp 19210 . . . . 5 (𝜑 → ((({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘𝑓 (.r𝑅)𝐺) supp (0g𝑅)) = (𝐺 supp (0g𝑅)))
2113, 20eqtrd 2655 . . . 4 (𝜑 → ((𝐹 · 𝐺) supp (0g𝑅)) = (𝐺 supp (0g𝑅)))
2221imaeq2d 5425 . . 3 (𝜑 → ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))))
2322supeq1d 8296 . 2 (𝜑 → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
24 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
251mpllmod 19370 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ LMod)
2624, 18, 25syl2anc 692 . . . 4 (𝜑𝑌 ∈ LMod)
271, 24, 18mplsca 19364 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑌))
2827fveq2d 6152 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
2910, 28eleqtrd 2700 . . . 4 (𝜑𝐹 ∈ (Base‘(Scalar‘𝑌)))
30 eqid 2621 . . . . 5 (Scalar‘𝑌) = (Scalar‘𝑌)
31 eqid 2621 . . . . 5 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
324, 30, 2, 31lmodvscl 18801 . . . 4 ((𝑌 ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
3326, 29, 11, 32syl3anc 1323 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
34 mdegaddle.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
35 eqid 2621 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
3634, 1, 4, 14, 6, 35mdegval 23727 . . 3 ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ))
3733, 36syl 17 . 2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ))
3834, 1, 4, 14, 6, 35mdegval 23727 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
3911, 38syl 17 . 2 (𝜑 → (𝐷𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
4023, 37, 393eqtr4d 2665 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  {csn 4148  cmpt 4673   × cxp 5072  ccnv 5073  cima 5077  cfv 5847  (class class class)co 6604  𝑓 cof 6848   supp csupp 7240  𝑚 cmap 7802  Fincfn 7899  supcsup 8290  *cxr 10017   < clt 10018  cn 10964  0cn0 11236  Basecbs 15781  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021   Σg cgsu 16022  Ringcrg 18468  LModclmod 18784  RLRegcrlreg 19198   mPoly cmpl 19272  fldccnfld 19665   mDeg cmdg 23717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-tset 15881  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-mgp 18411  df-ur 18423  df-ring 18470  df-lmod 18786  df-lss 18852  df-rlreg 19202  df-psr 19275  df-mpl 19277  df-mdeg 23719
This theorem is referenced by:  deg1vsca  23769
  Copyright terms: Public domain W3C validator