MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdet0pr Structured version   Visualization version   GIF version

Theorem mdet0pr 20155
Description: The determinant for 0-dimensional matrices is a singleton containing an ordered pair with the singleton containing the empty set as first component, and the singleton containing the 1 element of the underlying ring as second component. (Contributed by AV, 28-Feb-2019.)
Assertion
Ref Expression
mdet0pr (𝑅 ∈ Ring → (∅ maDet 𝑅) = {⟨∅, (1r𝑅)⟩})

Proof of Theorem mdet0pr
Dummy variables 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2605 . . . 4 (∅ maDet 𝑅) = (∅ maDet 𝑅)
2 eqid 2605 . . . 4 (∅ Mat 𝑅) = (∅ Mat 𝑅)
3 eqid 2605 . . . 4 (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅))
4 eqid 2605 . . . 4 (Base‘(SymGrp‘∅)) = (Base‘(SymGrp‘∅))
5 eqid 2605 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2605 . . . 4 (pmSgn‘∅) = (pmSgn‘∅)
7 eqid 2605 . . . 4 (.r𝑅) = (.r𝑅)
8 eqid 2605 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetfval 20149 . . 3 (∅ maDet 𝑅) = (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))))))
109a1i 11 . 2 (𝑅 ∈ Ring → (∅ maDet 𝑅) = (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
11 mat0dimbas0 20029 . . 3 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
1211mpteq1d 4656 . 2 (𝑅 ∈ Ring → (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
13 0ex 4709 . . . . 5 ∅ ∈ V
1413a1i 11 . . . 4 (𝑅 ∈ Ring → ∅ ∈ V)
15 ovex 6551 . . . 4 (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) ∈ V
16 oveq 6529 . . . . . . . . . 10 (𝑚 = ∅ → ((𝑝𝑥)𝑚𝑥) = ((𝑝𝑥)∅𝑥))
1716mpteq2dv 4663 . . . . . . . . 9 (𝑚 = ∅ → (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))
1817oveq2d 6539 . . . . . . . 8 (𝑚 = ∅ → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))
1918oveq2d 6539 . . . . . . 7 (𝑚 = ∅ → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))
2019mpteq2dv 4663 . . . . . 6 (𝑚 = ∅ → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))
2120oveq2d 6539 . . . . 5 (𝑚 = ∅ → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))))
2221fmptsng 6313 . . . 4 ((∅ ∈ V ∧ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) ∈ V) → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
2314, 15, 22sylancl 692 . . 3 (𝑅 ∈ Ring → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
24 mpt0 5916 . . . . . . . . . . . 12 (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)) = ∅
2524a1i 11 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)) = ∅)
2625oveq2d 6539 . . . . . . . . . 10 (𝑅 ∈ Ring → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))) = ((mulGrp‘𝑅) Σg ∅))
27 eqid 2605 . . . . . . . . . . 11 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
2827gsum0 17043 . . . . . . . . . 10 ((mulGrp‘𝑅) Σg ∅) = (0g‘(mulGrp‘𝑅))
2926, 28syl6eq 2655 . . . . . . . . 9 (𝑅 ∈ Ring → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))) = (0g‘(mulGrp‘𝑅)))
3029oveq2d 6539 . . . . . . . 8 (𝑅 ∈ Ring → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))
3130mpteq2dv 4663 . . . . . . 7 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅)))))
3231oveq2d 6539 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))))
33 eqid 2605 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
348, 33ringidval 18268 . . . . . . . . . . . 12 (1r𝑅) = (0g‘(mulGrp‘𝑅))
3534eqcomi 2614 . . . . . . . . . . 11 (0g‘(mulGrp‘𝑅)) = (1r𝑅)
3635a1i 11 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
3736oveq2d 6539 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)))
38 0fin 8046 . . . . . . . . . . 11 ∅ ∈ Fin
394, 6, 5zrhcopsgnelbas 19701 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅))
4038, 39mp3an2 1403 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅))
41 eqid 2605 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4241, 7, 33ringridm 18337 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4340, 42syldan 485 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4437, 43eqtrd 2639 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4544mpteq2dva 4662 . . . . . . 7 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅)))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)))
4645oveq2d 6539 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))))
47 simpl 471 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑅 ∈ Ring)
4838a1i 11 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ∅ ∈ Fin)
49 simpr 475 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑝 ∈ (Base‘(SymGrp‘∅)))
50 elsni 4137 . . . . . . . . . . . . . 14 (𝑝 ∈ {∅} → 𝑝 = ∅)
51 fveq2 6084 . . . . . . . . . . . . . . 15 (𝑝 = ∅ → ((pmSgn‘∅)‘𝑝) = ((pmSgn‘∅)‘∅))
52 psgn0fv0 17696 . . . . . . . . . . . . . . 15 ((pmSgn‘∅)‘∅) = 1
5351, 52syl6eq 2655 . . . . . . . . . . . . . 14 (𝑝 = ∅ → ((pmSgn‘∅)‘𝑝) = 1)
5450, 53syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ {∅} → ((pmSgn‘∅)‘𝑝) = 1)
55 symgbas0 17579 . . . . . . . . . . . . 13 (Base‘(SymGrp‘∅)) = {∅}
5654, 55eleq2s 2701 . . . . . . . . . . . 12 (𝑝 ∈ (Base‘(SymGrp‘∅)) → ((pmSgn‘∅)‘𝑝) = 1)
5756adantl 480 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((pmSgn‘∅)‘𝑝) = 1)
58 eqid 2605 . . . . . . . . . . . . 13 (SymGrp‘∅) = (SymGrp‘∅)
5958, 4, 6psgnevpmb 19693 . . . . . . . . . . . 12 (∅ ∈ Fin → (𝑝 ∈ (pmEven‘∅) ↔ (𝑝 ∈ (Base‘(SymGrp‘∅)) ∧ ((pmSgn‘∅)‘𝑝) = 1)))
6048, 59syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (𝑝 ∈ (pmEven‘∅) ↔ (𝑝 ∈ (Base‘(SymGrp‘∅)) ∧ ((pmSgn‘∅)‘𝑝) = 1)))
6149, 57, 60mpbir2and 958 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑝 ∈ (pmEven‘∅))
625, 6, 33zrhpsgnevpm 19697 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ (pmEven‘∅)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) = (1r𝑅))
6347, 48, 61, 62syl3anc 1317 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) = (1r𝑅))
6463mpteq2dva 4662 . . . . . . . 8 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅)))
6564oveq2d 6539 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅))))
6655a1i 11 . . . . . . . . 9 (𝑅 ∈ Ring → (Base‘(SymGrp‘∅)) = {∅})
6766mpteq1d 4656 . . . . . . . 8 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅)) = (𝑝 ∈ {∅} ↦ (1r𝑅)))
6867oveq2d 6539 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅))) = (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))))
69 ringmnd 18321 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
7041, 33ringidcl 18333 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
71 eqidd 2606 . . . . . . . . 9 (𝑝 = ∅ → (1r𝑅) = (1r𝑅))
7241, 71gsumsn 18119 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ∅ ∈ V ∧ (1r𝑅) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))) = (1r𝑅))
7369, 14, 70, 72syl3anc 1317 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))) = (1r𝑅))
7465, 68, 733eqtrd 2643 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))) = (1r𝑅))
7532, 46, 743eqtrd 2643 . . . . 5 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) = (1r𝑅))
7675opeq2d 4337 . . . 4 (𝑅 ∈ Ring → ⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩ = ⟨∅, (1r𝑅)⟩)
7776sneqd 4132 . . 3 (𝑅 ∈ Ring → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = {⟨∅, (1r𝑅)⟩})
7823, 77eqtr3d 2641 . 2 (𝑅 ∈ Ring → (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))) = {⟨∅, (1r𝑅)⟩})
7910, 12, 783eqtrd 2643 1 (𝑅 ∈ Ring → (∅ maDet 𝑅) = {⟨∅, (1r𝑅)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  Vcvv 3168  c0 3869  {csn 4120  cop 4126  cmpt 4633  ccom 5028  cfv 5786  (class class class)co 6523  Fincfn 7814  1c1 9789  Basecbs 15637  .rcmulr 15711  0gc0g 15865   Σg cgsu 15866  Mndcmnd 17059  SymGrpcsymg 17562  pmSgncpsgn 17674  pmEvencevpm 17675  mulGrpcmgp 18254  1rcur 18266  Ringcrg 18312  ℤRHomczrh 19608   Mat cmat 19970   maDet cmdat 20147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-xor 1456  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-ot 4129  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-sup 8204  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-word 13096  df-lsw 13097  df-concat 13098  df-s1 13099  df-substr 13100  df-splice 13101  df-reverse 13102  df-s2 13386  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-0g 15867  df-gsum 15868  df-prds 15873  df-pws 15875  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-mhm 17100  df-submnd 17101  df-grp 17190  df-minusg 17191  df-mulg 17306  df-subg 17356  df-ghm 17423  df-gim 17466  df-cntz 17515  df-oppg 17541  df-symg 17563  df-pmtr 17627  df-psgn 17676  df-evpm 17677  df-cmn 17960  df-abl 17961  df-mgp 18255  df-ur 18267  df-ring 18314  df-cring 18315  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-invr 18437  df-dvr 18448  df-rnghom 18480  df-drng 18514  df-subrg 18543  df-sra 18935  df-rgmod 18936  df-cnfld 19510  df-zring 19580  df-zrh 19612  df-dsmm 19833  df-frlm 19848  df-mat 19971  df-mdet 20148
This theorem is referenced by:  mdet0f1o  20156  mdet0fv0  20157  chpmat0d  20396
  Copyright terms: Public domain W3C validator