MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetfval Structured version   Visualization version   GIF version

Theorem mdetfval 21197
Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetfval 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Distinct variable groups:   𝐵,𝑚   𝑚,𝑝,𝑥,𝑁   𝑃,𝑚   𝑅,𝑚,𝑝,𝑥   𝑆,𝑚   · ,𝑚   𝑈,𝑚   𝑚,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑝)   𝐵(𝑥,𝑝)   𝐷(𝑥,𝑚,𝑝)   𝑃(𝑥,𝑝)   𝑆(𝑥,𝑝)   · (𝑥,𝑝)   𝑈(𝑥,𝑝)   𝑌(𝑥,𝑝)

Proof of Theorem mdetfval
Dummy variables 𝑦 𝑧 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 oveq12 7167 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3 mdetfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
42, 3syl6eqr 2876 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
54fveq2d 6676 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
6 mdetfval.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6syl6eqr 2876 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
8 simpr 487 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑟 = 𝑅)
9 simpl 485 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
109fveq2d 6676 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (SymGrp‘𝑛) = (SymGrp‘𝑁))
1110fveq2d 6676 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = (Base‘(SymGrp‘𝑁)))
12 mdetfval.p . . . . . . . 8 𝑃 = (Base‘(SymGrp‘𝑁))
1311, 12syl6eqr 2876 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = 𝑃)
14 fveq2 6672 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
1514adantl 484 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = (.r𝑅))
16 mdetfval.t . . . . . . . . 9 · = (.r𝑅)
1715, 16syl6eqr 2876 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = · )
188fveq2d 6676 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
19 mdetfval.y . . . . . . . . . . 11 𝑌 = (ℤRHom‘𝑅)
2018, 19syl6eqr 2876 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = 𝑌)
21 fveq2 6672 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (pmSgn‘𝑛) = (pmSgn‘𝑁))
2221adantr 483 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = (pmSgn‘𝑁))
23 mdetfval.s . . . . . . . . . . 11 𝑆 = (pmSgn‘𝑁)
2422, 23syl6eqr 2876 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = 𝑆)
2520, 24coeq12d 5737 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛)) = (𝑌𝑆))
2625fveq1d 6674 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝) = ((𝑌𝑆)‘𝑝))
27 fveq2 6672 . . . . . . . . . . 11 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2827adantl 484 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = (mulGrp‘𝑅))
29 mdetfval.u . . . . . . . . . 10 𝑈 = (mulGrp‘𝑅)
3028, 29syl6eqr 2876 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = 𝑈)
319mpteq1d 5157 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))
3230, 31oveq12d 7176 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))
3317, 26, 32oveq123d 7179 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))
3413, 33mpteq12dv 5153 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))
358, 34oveq12d 7176 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
367, 35mpteq12dv 5153 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
37 df-mdet 21196 . . . 4 maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
386fvexi 6686 . . . . 5 𝐵 ∈ V
3938mptex 6988 . . . 4 (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) ∈ V
4036, 37, 39ovmpoa 7307 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
4137reldmmpo 7287 . . . . . 6 Rel dom maDet
4241ovprc 7196 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = ∅)
43 mpt0 6492 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅
4442, 43syl6eqr 2876 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
45 df-mat 21019 . . . . . . . . . 10 Mat = (𝑦 ∈ Fin, 𝑧 ∈ V ↦ ((𝑧 freeLMod (𝑦 × 𝑦)) sSet ⟨(.r‘ndx), (𝑧 maMul ⟨𝑦, 𝑦, 𝑦⟩)⟩))
4645reldmmpo 7287 . . . . . . . . 9 Rel dom Mat
4746ovprc 7196 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
483, 47syl5eq 2870 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4948fveq2d 6676 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
50 base0 16538 . . . . . 6 ∅ = (Base‘∅)
5149, 6, 503eqtr4g 2883 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5251mpteq1d 5157 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5344, 52eqtr4d 2861 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5440, 53pm2.61i 184 . 2 (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
551, 54eqtri 2846 1 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293  cop 4575  cotp 4577  cmpt 5148   × cxp 5555  ccom 5561  cfv 6357  (class class class)co 7158  Fincfn 8511  ndxcnx 16482   sSet csts 16483  Basecbs 16485  .rcmulr 16568   Σg cgsu 16716  SymGrpcsymg 18497  pmSgncpsgn 18619  mulGrpcmgp 19241  ℤRHomczrh 20649   freeLMod cfrlm 20892   maMul cmmul 20996   Mat cmat 21018   maDet cmdat 21195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-slot 16489  df-base 16491  df-mat 21019  df-mdet 21196
This theorem is referenced by:  mdetleib  21198  nfimdetndef  21200  mdetfval1  21201  mdet0pr  21203  mdetf  21206
  Copyright terms: Public domain W3C validator