MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetralt Structured version   Visualization version   GIF version

Theorem mdetralt 20395
Description: The determinant function is alternating regarding rows: if a matrix has two identical rows, its determinant is 0. Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 23-Jul-2018.)
Hypotheses
Ref Expression
mdetralt.d 𝐷 = (𝑁 maDet 𝑅)
mdetralt.a 𝐴 = (𝑁 Mat 𝑅)
mdetralt.b 𝐵 = (Base‘𝐴)
mdetralt.z 0 = (0g𝑅)
mdetralt.r (𝜑𝑅 ∈ CRing)
mdetralt.x (𝜑𝑋𝐵)
mdetralt.i (𝜑𝐼𝑁)
mdetralt.j (𝜑𝐽𝑁)
mdetralt.ij (𝜑𝐼𝐽)
mdetralt.eq (𝜑 → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
Assertion
Ref Expression
mdetralt (𝜑 → (𝐷𝑋) = 0 )
Distinct variable groups:   𝐼,𝑎   𝐽,𝑎   𝑁,𝑎   𝑋,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐷(𝑎)   𝑅(𝑎)   0 (𝑎)

Proof of Theorem mdetralt
Dummy variables 𝑐 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetralt.x . . 3 (𝜑𝑋𝐵)
2 mdetralt.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
3 mdetralt.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
4 mdetralt.b . . . 4 𝐵 = (Base‘𝐴)
5 eqid 2620 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
6 eqid 2620 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
7 eqid 2620 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
8 eqid 2620 . . . 4 (.r𝑅) = (.r𝑅)
9 eqid 2620 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
102, 3, 4, 5, 6, 7, 8, 9mdetleib 20374 . . 3 (𝑋𝐵 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
111, 10syl 17 . 2 (𝜑 → (𝐷𝑋) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
12 eqid 2620 . . 3 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2620 . . 3 (+g𝑅) = (+g𝑅)
14 mdetralt.r . . . . 5 (𝜑𝑅 ∈ CRing)
15 crngring 18539 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1614, 15syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
17 ringcmn 18562 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1816, 17syl 17 . . 3 (𝜑𝑅 ∈ CMnd)
193, 4matrcl 20199 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
201, 19syl 17 . . . . 5 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2120simpld 475 . . . 4 (𝜑𝑁 ∈ Fin)
22 eqid 2620 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2322, 5symgbasfi 17787 . . . 4 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2421, 23syl 17 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2516adantr 481 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
26 zrhpsgnmhm 19911 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2716, 21, 26syl2anc 692 . . . . . 6 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
289, 12mgpbas 18476 . . . . . . 7 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
295, 28mhmf 17321 . . . . . 6 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
3027, 29syl 17 . . . . 5 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶(Base‘𝑅))
3130ffvelrnda 6345 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅))
329crngmgp 18536 . . . . . . 7 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3314, 32syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
3433adantr 481 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
3521adantr 481 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑁 ∈ Fin)
363, 12, 4matbas2i 20209 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
371, 36syl 17 . . . . . . . . 9 (𝜑𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
38 elmapi 7864 . . . . . . . . 9 (𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
3937, 38syl 17 . . . . . . . 8 (𝜑𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
4039ad2antrr 761 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑋:(𝑁 × 𝑁)⟶(Base‘𝑅))
4122, 5symgbasf1o 17784 . . . . . . . . . 10 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) → 𝑝:𝑁1-1-onto𝑁)
4241adantl 482 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁1-1-onto𝑁)
43 f1of 6124 . . . . . . . . 9 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝:𝑁𝑁)
4544ffvelrnda 6345 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → (𝑝𝑐) ∈ 𝑁)
46 simpr 477 . . . . . . 7 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → 𝑐𝑁)
4740, 45, 46fovrnd 6791 . . . . . 6 (((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑐𝑁) → ((𝑝𝑐)𝑋𝑐) ∈ (Base‘𝑅))
4847ralrimiva 2963 . . . . 5 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ∀𝑐𝑁 ((𝑝𝑐)𝑋𝑐) ∈ (Base‘𝑅))
4928, 34, 35, 48gsummptcl 18347 . . . 4 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
5012, 8ringcl 18542 . . . 4 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∈ (Base‘𝑅))
5125, 31, 49, 50syl3anc 1324 . . 3 ((𝜑𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∈ (Base‘𝑅))
52 disjdif 4031 . . . 4 ((pmEven‘𝑁) ∩ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ∅
5352a1i 11 . . 3 (𝜑 → ((pmEven‘𝑁) ∩ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ∅)
5422, 5evpmss 19913 . . . . . 6 (pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
55 undif 4040 . . . . . 6 ((pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)) ↔ ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (Base‘(SymGrp‘𝑁)))
5654, 55mpbi 220 . . . . 5 ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (Base‘(SymGrp‘𝑁))
5756eqcomi 2629 . . . 4 (Base‘(SymGrp‘𝑁)) = ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
5857a1i 11 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) = ((pmEven‘𝑁) ∪ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))
59 eqid 2620 . . 3 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
6012, 13, 18, 24, 51, 53, 58, 59gsummptfidmsplitres 18312 . 2 (𝜑 → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))))
61 resmpt 5437 . . . . . . 7 ((pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
6254, 61ax-mp 5 . . . . . 6 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
6316adantr 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑅 ∈ Ring)
6421adantr 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑁 ∈ Fin)
65 simpr 477 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝 ∈ (pmEven‘𝑁))
66 eqid 2620 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
676, 7, 66zrhpsgnevpm 19918 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ (pmEven‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (1r𝑅))
6863, 64, 65, 67syl3anc 1324 . . . . . . . . 9 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (1r𝑅))
6968oveq1d 6650 . . . . . . . 8 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7054sseli 3591 . . . . . . . . . 10 (𝑝 ∈ (pmEven‘𝑁) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
7170, 49sylan2 491 . . . . . . . . 9 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
7212, 8, 66ringlidm 18552 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7363, 71, 72syl2anc 692 . . . . . . . 8 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((1r𝑅)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7469, 73eqtrd 2654 . . . . . . 7 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
7574mpteq2dva 4735 . . . . . 6 (𝜑 → (𝑝 ∈ (pmEven‘𝑁) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7662, 75syl5eq 2666 . . . . 5 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
7776oveq2d 6651 . . . 4 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
78 difss 3729 . . . . . . . 8 ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁))
79 resmpt 5437 . . . . . . . 8 (((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁)) → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
8078, 79ax-mp 5 . . . . . . 7 ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
8116adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑅 ∈ Ring)
8221adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑁 ∈ Fin)
83 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → 𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
84 eqid 2620 . . . . . . . . . . . . 13 (invg𝑅) = (invg𝑅)
856, 7, 66, 5, 84zrhpsgnodpm 19919 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = ((invg𝑅)‘(1r𝑅)))
8681, 82, 83, 85syl3anc 1324 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = ((invg𝑅)‘(1r𝑅)))
8786oveq1d 6650 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (((invg𝑅)‘(1r𝑅))(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
88 eldifi 3724 . . . . . . . . . . . 12 (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
8988, 49sylan2 491 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
9012, 8, 66, 84, 81, 89ringnegl 18575 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((invg𝑅)‘(1r𝑅))(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
9187, 90eqtrd 2654 . . . . . . . . 9 ((𝜑𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
9291mpteq2dva 4735 . . . . . . . 8 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
93 eqidd 2621 . . . . . . . . 9 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
94 ringgrp 18533 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9516, 94syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Grp)
9612, 84grpinvf 17447 . . . . . . . . . . 11 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
9795, 96syl 17 . . . . . . . . . 10 (𝜑 → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
9897feqmptd 6236 . . . . . . . . 9 (𝜑 → (invg𝑅) = (𝑞 ∈ (Base‘𝑅) ↦ ((invg𝑅)‘𝑞)))
99 fveq2 6178 . . . . . . . . 9 (𝑞 = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) → ((invg𝑅)‘𝑞) = ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
10089, 93, 98, 99fmptco 6382 . . . . . . . 8 (𝜑 → ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((invg𝑅)‘((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
10192, 100eqtr4d 2657 . . . . . . 7 (𝜑 → (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
10280, 101syl5eq 2666 . . . . . 6 (𝜑 → ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) = ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
103102oveq2d 6651 . . . . 5 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))) = (𝑅 Σg ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
104 mdetralt.z . . . . . 6 0 = (0g𝑅)
105 ringabl 18561 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
10616, 105syl 17 . . . . . 6 (𝜑𝑅 ∈ Abel)
107 difssd 3730 . . . . . . 7 (𝜑 → ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁)))
108 ssfi 8165 . . . . . . 7 (((Base‘(SymGrp‘𝑁)) ∈ Fin ∧ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ⊆ (Base‘(SymGrp‘𝑁))) → ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ∈ Fin)
10924, 107, 108syl2anc 692 . . . . . 6 (𝜑 → ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ∈ Fin)
110 eqid 2620 . . . . . 6 (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) = (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
11112, 104, 84, 106, 109, 89, 110gsummptfidminv 18328 . . . . 5 (𝜑 → (𝑅 Σg ((invg𝑅) ∘ (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
11289ralrimiva 2963 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
113 mdetralt.i . . . . . . . . . . . 12 (𝜑𝐼𝑁)
114 mdetralt.j . . . . . . . . . . . 12 (𝜑𝐽𝑁)
115 prssi 4344 . . . . . . . . . . . 12 ((𝐼𝑁𝐽𝑁) → {𝐼, 𝐽} ⊆ 𝑁)
116113, 114, 115syl2anc 692 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ⊆ 𝑁)
117 mdetralt.ij . . . . . . . . . . . 12 (𝜑𝐼𝐽)
118 pr2nelem 8812 . . . . . . . . . . . 12 ((𝐼𝑁𝐽𝑁𝐼𝐽) → {𝐼, 𝐽} ≈ 2𝑜)
119113, 114, 117, 118syl3anc 1324 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ≈ 2𝑜)
120 eqid 2620 . . . . . . . . . . . 12 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
121 eqid 2620 . . . . . . . . . . . 12 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
122120, 121pmtrrn 17858 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2𝑜) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
12321, 116, 119, 122syl3anc 1324 . . . . . . . . . 10 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
12422, 5, 121pmtrodpm 19924 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12521, 123, 124syl2anc 692 . . . . . . . . 9 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12622, 5evpmodpmf1o 19923 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)):(pmEven‘𝑁)–1-1-onto→((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12721, 125, 126syl2anc 692 . . . . . . . 8 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)):(pmEven‘𝑁)–1-1-onto→((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
12812, 18, 109, 112, 110, 127gsummptfif1o 18348 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑅 Σg ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))))
129 eleq1 2687 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑝 ∈ (pmEven‘𝑁) ↔ 𝑞 ∈ (pmEven‘𝑁)))
130129anbi2d 739 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((𝜑𝑝 ∈ (pmEven‘𝑁)) ↔ (𝜑𝑞 ∈ (pmEven‘𝑁))))
131 oveq2 6643 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))
132131eleq1d 2684 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))
133130, 132imbi12d 334 . . . . . . . . . . 11 (𝑝 = 𝑞 → (((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) ↔ ((𝜑𝑞 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))))
13422symggrp 17801 . . . . . . . . . . . . . . 15 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
13521, 134syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SymGrp‘𝑁) ∈ Grp)
136135adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (SymGrp‘𝑁) ∈ Grp)
137121, 22, 5symgtrf 17870 . . . . . . . . . . . . . 14 ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
138123adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁))
139137, 138sseldi 3593 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)))
14070adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
141 eqid 2620 . . . . . . . . . . . . . 14 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
1425, 141grpcl 17411 . . . . . . . . . . . . 13 (((SymGrp‘𝑁) ∈ Grp ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)))
143136, 139, 140, 142syl3anc 1324 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)))
144 eqid 2620 . . . . . . . . . . . . . . . . 17 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
14522, 7, 144psgnghm2 19908 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Fin → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
14621, 145syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
147146adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
148 prex 4900 . . . . . . . . . . . . . . . 16 {1, -1} ∈ V
149 eqid 2620 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
150 cnfldmul 19733 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
151149, 150mgpplusg 18474 . . . . . . . . . . . . . . . . 17 · = (+g‘(mulGrp‘ℂfld))
152144, 151ressplusg 15974 . . . . . . . . . . . . . . . 16 ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})))
153148, 152ax-mp 5 . . . . . . . . . . . . . . 15 · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))
1545, 141, 153ghmlin 17646 . . . . . . . . . . . . . 14 (((pmSgn‘𝑁) ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)))
155147, 139, 140, 154syl3anc 1324 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)))
15622, 121, 7psgnpmtr 17911 . . . . . . . . . . . . . . . 16 (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝑁) → ((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) = -1)
157138, 156syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) = -1)
15822, 5, 7psgnevpm 19916 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘𝑝) = 1)
15921, 158sylan 488 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘𝑝) = 1)
160157, 159oveq12d 6653 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)) = (-1 · 1))
161 neg1cn 11109 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
162161mulid1i 10027 . . . . . . . . . . . . . 14 (-1 · 1) = -1
163160, 162syl6eq 2670 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmSgn‘𝑁)‘((pmTrsp‘𝑁)‘{𝐼, 𝐽})) · ((pmSgn‘𝑁)‘𝑝)) = -1)
164155, 163eqtrd 2654 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = -1)
16522, 5, 7psgnodpmr 19917 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ (Base‘(SymGrp‘𝑁)) ∧ ((pmSgn‘𝑁)‘(((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)) = -1) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
16664, 143, 164, 165syl3anc 1324 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
167133, 166chvarv 2261 . . . . . . . . . 10 ((𝜑𝑞 ∈ (pmEven‘𝑁)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
168 eqidd 2621 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)) = (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))
169 fveq1 6177 . . . . . . . . . . . . 13 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → (𝑝𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐))
170169oveq1d 6650 . . . . . . . . . . . 12 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → ((𝑝𝑐)𝑋𝑐) = (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))
171170mpteq2dv 4736 . . . . . . . . . . 11 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))
172171oveq2d 6651 . . . . . . . . . 10 (𝑝 = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))))
173167, 168, 93, 172fmptco 6382 . . . . . . . . 9 (𝜑 → ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))) = (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))))
174 oveq2 6643 . . . . . . . . . . . . . . 15 (𝑞 = 𝑝 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝))
175174fveq1d 6180 . . . . . . . . . . . . . 14 (𝑞 = 𝑝 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐))
176175oveq1d 6650 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐) = (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))
177176mpteq2dv 4736 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))
178177oveq2d 6651 . . . . . . . . . . 11 (𝑞 = 𝑝 → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))))
179178cbvmptv 4741 . . . . . . . . . 10 (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))))
180179a1i 11 . . . . . . . . 9 (𝜑 → (𝑞 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))))
181139adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)))
182140adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
18322, 5, 141symgov 17791 . . . . . . . . . . . . . . . . 17 ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝))
184181, 182, 183syl2anc 692 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝))
185184fveq1d 6180 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐))
18670, 44sylan2 491 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → 𝑝:𝑁𝑁)
187 fvco3 6262 . . . . . . . . . . . . . . . 16 ((𝑝:𝑁𝑁𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
188186, 187sylan 488 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∘ 𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
189185, 188eqtrd 2654 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)))
190189oveq1d 6650 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐))
191120pmtrprfv 17854 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
19221, 113, 114, 117, 191syl13anc 1326 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
193192ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼) = 𝐽)
194193oveq1d 6650 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐽𝑋𝑐))
195 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → 𝑐𝑁)
196 mdetralt.eq . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
197196ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎))
198 oveq2 6643 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → (𝐼𝑋𝑎) = (𝐼𝑋𝑐))
199 oveq2 6643 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → (𝐽𝑋𝑎) = (𝐽𝑋𝑐))
200198, 199eqeq12d 2635 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → ((𝐼𝑋𝑎) = (𝐽𝑋𝑎) ↔ (𝐼𝑋𝑐) = (𝐽𝑋𝑐)))
201200rspcv 3300 . . . . . . . . . . . . . . . . 17 (𝑐𝑁 → (∀𝑎𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎) → (𝐼𝑋𝑐) = (𝐽𝑋𝑐)))
202195, 197, 201sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (𝐼𝑋𝑐) = (𝐽𝑋𝑐))
203194, 202eqtr4d 2657 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐼𝑋𝑐))
204 fveq2 6178 . . . . . . . . . . . . . . . . 17 ((𝑝𝑐) = 𝐼 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼))
205204oveq1d 6650 . . . . . . . . . . . . . . . 16 ((𝑝𝑐) = 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐))
206 oveq1 6642 . . . . . . . . . . . . . . . 16 ((𝑝𝑐) = 𝐼 → ((𝑝𝑐)𝑋𝑐) = (𝐼𝑋𝑐))
207205, 206eqeq12d 2635 . . . . . . . . . . . . . . 15 ((𝑝𝑐) = 𝐼 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐) ↔ ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐼)𝑋𝑐) = (𝐼𝑋𝑐)))
208203, 207syl5ibrcom 237 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
209 prcom 4258 . . . . . . . . . . . . . . . . . . . . . . 23 {𝐼, 𝐽} = {𝐽, 𝐼}
210209fveq2i 6181 . . . . . . . . . . . . . . . . . . . . . 22 ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) = ((pmTrsp‘𝑁)‘{𝐽, 𝐼})
211210fveq1i 6179 . . . . . . . . . . . . . . . . . . . . 21 (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽) = (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽)
212117necomd 2846 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽𝐼)
213120pmtrprfv 17854 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ (𝐽𝑁𝐼𝑁𝐽𝐼)) → (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽) = 𝐼)
21421, 114, 113, 212, 213syl13anc 1326 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((pmTrsp‘𝑁)‘{𝐽, 𝐼})‘𝐽) = 𝐼)
215211, 214syl5eq 2666 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽) = 𝐼)
216215oveq1d 6650 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐼𝑋𝑐))
217216ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐼𝑋𝑐))
218217, 202eqtrd 2654 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐽𝑋𝑐))
219 fveq2 6178 . . . . . . . . . . . . . . . . . . 19 ((𝑝𝑐) = 𝐽 → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽))
220219oveq1d 6650 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑐) = 𝐽 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐))
221 oveq1 6642 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑐) = 𝐽 → ((𝑝𝑐)𝑋𝑐) = (𝐽𝑋𝑐))
222220, 221eqeq12d 2635 . . . . . . . . . . . . . . . . 17 ((𝑝𝑐) = 𝐽 → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐) ↔ ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘𝐽)𝑋𝑐) = (𝐽𝑋𝑐)))
223218, 222syl5ibrcom 237 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐽 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
224223a1dd 50 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) = 𝐽 → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))))
225 neanior 2883 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) ↔ ¬ ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼))
226 elpri 4188 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝𝑐) ∈ {𝐼, 𝐽} → ((𝑝𝑐) = 𝐼 ∨ (𝑝𝑐) = 𝐽))
227226orcomd 403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝𝑐) ∈ {𝐼, 𝐽} → ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼))
228227con3i 150 . . . . . . . . . . . . . . . . . . . . 21 (¬ ((𝑝𝑐) = 𝐽 ∨ (𝑝𝑐) = 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
229225, 228sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (((𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
2302293adant1 1077 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ {𝐼, 𝐽})
231120pmtrmvd 17857 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2𝑜) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
23221, 116, 119, 231syl3anc 1324 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
233232ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
2342333ad2ant1 1080 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
235230, 234neleqtrrd 2721 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ¬ (𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ))
236120pmtrf 17856 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ {𝐼, 𝐽} ⊆ 𝑁 ∧ {𝐼, 𝐽} ≈ 2𝑜) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}):𝑁𝑁)
23721, 116, 119, 236syl3anc 1324 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}):𝑁𝑁)
238 ffn 6032 . . . . . . . . . . . . . . . . . . . . . . 23 (((pmTrsp‘𝑁)‘{𝐼, 𝐽}):𝑁𝑁 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁)
239237, 238syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁)
240239ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁)
241186ffvelrnda 6345 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (𝑝𝑐) ∈ 𝑁)
242 fnelnfp 6428 . . . . . . . . . . . . . . . . . . . . 21 ((((pmTrsp‘𝑁)‘{𝐼, 𝐽}) Fn 𝑁 ∧ (𝑝𝑐) ∈ 𝑁) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
243240, 241, 242syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
2442433ad2ant1 1080 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) ≠ (𝑝𝑐)))
245244necon2bbid 2834 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (𝑝𝑐) ↔ ¬ (𝑝𝑐) ∈ dom (((pmTrsp‘𝑁)‘{𝐼, 𝐽}) ∖ I )))
246235, 245mpbird 247 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → (((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐)) = (𝑝𝑐))
247246oveq1d 6650 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) ∧ (𝑝𝑐) ≠ 𝐽 ∧ (𝑝𝑐) ≠ 𝐼) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
2482473exp 1262 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ≠ 𝐽 → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))))
249224, 248pm2.61dne 2877 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((𝑝𝑐) ≠ 𝐼 → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐)))
250208, 249pm2.61dne 2877 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → ((((pmTrsp‘𝑁)‘{𝐼, 𝐽})‘(𝑝𝑐))𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
251190, 250eqtrd 2654 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (pmEven‘𝑁)) ∧ 𝑐𝑁) → (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐) = ((𝑝𝑐)𝑋𝑐))
252251mpteq2dva 4735 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)) = (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))
253252oveq2d 6651 . . . . . . . . . 10 ((𝜑𝑝 ∈ (pmEven‘𝑁)) → ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐))) = ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))
254253mpteq2dva 4735 . . . . . . . . 9 (𝜑 → (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ (((((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑝)‘𝑐)𝑋𝑐)))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
255173, 180, 2543eqtrd 2658 . . . . . . . 8 (𝜑 → ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞))) = (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))
256255oveq2d 6651 . . . . . . 7 (𝜑 → (𝑅 Σg ((𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))) ∘ (𝑞 ∈ (pmEven‘𝑁) ↦ (((pmTrsp‘𝑁)‘{𝐼, 𝐽})(+g‘(SymGrp‘𝑁))𝑞)))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
257128, 256eqtrd 2654 . . . . . 6 (𝜑 → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) = (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))
258257fveq2d 6182 . . . . 5 (𝜑 → ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
259103, 111, 2583eqtrd 2658 . . . 4 (𝜑 → (𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))) = ((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))))
26077, 259oveq12d 6653 . . 3 (𝜑 → ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))) = ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))))
26154a1i 11 . . . . . 6 (𝜑 → (pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)))
262 ssfi 8165 . . . . . 6 (((Base‘(SymGrp‘𝑁)) ∈ Fin ∧ (pmEven‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))) → (pmEven‘𝑁) ∈ Fin)
26324, 261, 262syl2anc 692 . . . . 5 (𝜑 → (pmEven‘𝑁) ∈ Fin)
26471ralrimiva 2963 . . . . 5 (𝜑 → ∀𝑝 ∈ (pmEven‘𝑁)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))) ∈ (Base‘𝑅))
26512, 18, 263, 264gsummptcl 18347 . . . 4 (𝜑 → (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ∈ (Base‘𝑅))
26612, 13, 104, 84grprinv 17450 . . . 4 ((𝑅 ∈ Grp ∧ (𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))) = 0 )
26795, 265, 266syl2anc 692 . . 3 (𝜑 → ((𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐)))))(+g𝑅)((invg𝑅)‘(𝑅 Σg (𝑝 ∈ (pmEven‘𝑁) ↦ ((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))))) = 0 )
268260, 267eqtrd 2654 . 2 (𝜑 → ((𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ (pmEven‘𝑁)))(+g𝑅)(𝑅 Σg ((𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑐𝑁 ↦ ((𝑝𝑐)𝑋𝑐))))) ↾ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))))) = 0 )
26911, 60, 2683eqtrd 2658 1 (𝜑 → (𝐷𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  Vcvv 3195  cdif 3564  cun 3565  cin 3566  wss 3567  c0 3907  {cpr 4170   class class class wbr 4644  cmpt 4720   I cid 5013   × cxp 5102  dom cdm 5104  ran crn 5105  cres 5106  ccom 5108   Fn wfn 5871  wf 5872  1-1-ontowf1o 5875  cfv 5876  (class class class)co 6635  2𝑜c2o 7539  𝑚 cmap 7842  cen 7937  Fincfn 7940  1c1 9922   · cmul 9926  -cneg 10252  Basecbs 15838  s cress 15839  +gcplusg 15922  .rcmulr 15923  0gc0g 16081   Σg cgsu 16082   MndHom cmhm 17314  Grpcgrp 17403  invgcminusg 17404   GrpHom cghm 17638  SymGrpcsymg 17778  pmTrspcpmtr 17842  pmSgncpsgn 17890  pmEvencevpm 17891  CMndccmn 18174  Abelcabl 18175  mulGrpcmgp 18470  1rcur 18482  Ringcrg 18528  CRingccrg 18529  fldccnfld 19727  ℤRHomczrh 19829   Mat cmat 20194   maDet cmdat 20371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1463  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-ot 4177  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-rp 11818  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-word 13282  df-lsw 13283  df-concat 13284  df-s1 13285  df-substr 13286  df-splice 13287  df-reverse 13288  df-s2 13574  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-0g 16083  df-gsum 16084  df-prds 16089  df-pws 16091  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-submnd 17317  df-grp 17406  df-minusg 17407  df-mulg 17522  df-subg 17572  df-ghm 17639  df-gim 17682  df-cntz 17731  df-oppg 17757  df-symg 17779  df-pmtr 17843  df-psgn 17892  df-evpm 17893  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-dvr 18664  df-rnghom 18696  df-drng 18730  df-subrg 18759  df-sra 19153  df-rgmod 19154  df-cnfld 19728  df-zring 19800  df-zrh 19833  df-dsmm 20057  df-frlm 20072  df-mat 20195  df-mdet 20372
This theorem is referenced by:  mdetralt2  20396  mdetuni0  20408  mdetmul  20410
  Copyright terms: Public domain W3C validator