MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem1 Structured version   Visualization version   GIF version

Theorem mdetunilem1 20332
Description: Lemma for mdetuni 20342. (Contributed by SO, 14-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
Assertion
Ref Expression
mdetunilem1 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → (𝐷𝐸) = 0 )
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤   𝑥,𝐵,𝑦,𝑧,𝑤   𝑥,𝐾,𝑦,𝑧,𝑤   𝑥,𝑁,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝑥, · ,𝑦,𝑧,𝑤   𝑥, + ,𝑦,𝑧,𝑤   𝑥, 0 ,𝑦,𝑧,𝑤   𝑥, 1 ,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝑥,𝐴,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤

Proof of Theorem mdetunilem1
StepHypRef Expression
1 simpr3 1067 . 2 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → 𝐹𝐺)
2 simpl3 1064 . 2 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤))
3 neeq2 2859 . . . . 5 (𝑧 = 𝐺 → (𝐹𝑧𝐹𝐺))
4 oveq1 6612 . . . . . . 7 (𝑧 = 𝐺 → (𝑧𝐸𝑤) = (𝐺𝐸𝑤))
54eqeq2d 2636 . . . . . 6 (𝑧 = 𝐺 → ((𝐹𝐸𝑤) = (𝑧𝐸𝑤) ↔ (𝐹𝐸𝑤) = (𝐺𝐸𝑤)))
65ralbidv 2985 . . . . 5 (𝑧 = 𝐺 → (∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤) ↔ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)))
73, 6anbi12d 746 . . . 4 (𝑧 = 𝐺 → ((𝐹𝑧 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) ↔ (𝐹𝐺 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤))))
87imbi1d 331 . . 3 (𝑧 = 𝐺 → (((𝐹𝑧 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 ) ↔ ((𝐹𝐺 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷𝐸) = 0 )))
9 simpl2 1063 . . . 4 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → 𝐸𝐵)
10 simpr1 1065 . . . 4 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → 𝐹𝑁)
11 simpl1 1062 . . . . 5 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → 𝜑)
12 mdetuni.al . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
1311, 12syl 17 . . . 4 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
14 oveq 6611 . . . . . . . . . 10 (𝑥 = 𝐸 → (𝑦𝑥𝑤) = (𝑦𝐸𝑤))
15 oveq 6611 . . . . . . . . . 10 (𝑥 = 𝐸 → (𝑧𝑥𝑤) = (𝑧𝐸𝑤))
1614, 15eqeq12d 2641 . . . . . . . . 9 (𝑥 = 𝐸 → ((𝑦𝑥𝑤) = (𝑧𝑥𝑤) ↔ (𝑦𝐸𝑤) = (𝑧𝐸𝑤)))
1716ralbidv 2985 . . . . . . . 8 (𝑥 = 𝐸 → (∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤) ↔ ∀𝑤𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)))
1817anbi2d 739 . . . . . . 7 (𝑥 = 𝐸 → ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) ↔ (𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤))))
19 fveq2 6150 . . . . . . . 8 (𝑥 = 𝐸 → (𝐷𝑥) = (𝐷𝐸))
2019eqeq1d 2628 . . . . . . 7 (𝑥 = 𝐸 → ((𝐷𝑥) = 0 ↔ (𝐷𝐸) = 0 ))
2118, 20imbi12d 334 . . . . . 6 (𝑥 = 𝐸 → (((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ) ↔ ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 )))
2221ralbidv 2985 . . . . 5 (𝑥 = 𝐸 → (∀𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ) ↔ ∀𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 )))
23 neeq1 2858 . . . . . . . 8 (𝑦 = 𝐹 → (𝑦𝑧𝐹𝑧))
24 oveq1 6612 . . . . . . . . . 10 (𝑦 = 𝐹 → (𝑦𝐸𝑤) = (𝐹𝐸𝑤))
2524eqeq1d 2628 . . . . . . . . 9 (𝑦 = 𝐹 → ((𝑦𝐸𝑤) = (𝑧𝐸𝑤) ↔ (𝐹𝐸𝑤) = (𝑧𝐸𝑤)))
2625ralbidv 2985 . . . . . . . 8 (𝑦 = 𝐹 → (∀𝑤𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤) ↔ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)))
2723, 26anbi12d 746 . . . . . . 7 (𝑦 = 𝐹 → ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) ↔ (𝐹𝑧 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤))))
2827imbi1d 331 . . . . . 6 (𝑦 = 𝐹 → (((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 ) ↔ ((𝐹𝑧 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 )))
2928ralbidv 2985 . . . . 5 (𝑦 = 𝐹 → (∀𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 ) ↔ ∀𝑧𝑁 ((𝐹𝑧 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 )))
3022, 29rspc2va 3312 . . . 4 (((𝐸𝐵𝐹𝑁) ∧ ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 )) → ∀𝑧𝑁 ((𝐹𝑧 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 ))
319, 10, 13, 30syl21anc 1322 . . 3 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → ∀𝑧𝑁 ((𝐹𝑧 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷𝐸) = 0 ))
32 simpr2 1066 . . 3 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → 𝐺𝑁)
338, 31, 32rspcdva 3306 . 2 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → ((𝐹𝐺 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷𝐸) = 0 ))
341, 2, 33mp2and 714 1 (((𝜑𝐸𝐵 ∧ ∀𝑤𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹𝑁𝐺𝑁𝐹𝐺)) → (𝐷𝐸) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  cdif 3557  {csn 4153   × cxp 5077  cres 5081  wf 5846  cfv 5850  (class class class)co 6605  𝑓 cof 6849  Fincfn 7900  Basecbs 15776  +gcplusg 15857  .rcmulr 15858  0gc0g 16016  1rcur 18417  Ringcrg 18463   Mat cmat 20127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-iota 5813  df-fv 5858  df-ov 6608
This theorem is referenced by:  mdetunilem2  20333  mdetuni0  20341
  Copyright terms: Public domain W3C validator