MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem6 Structured version   Visualization version   GIF version

Theorem mdetunilem6 21229
Description: Lemma for mdetuni 21234. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem6.ph (𝜓𝜑)
mdetunilem6.ef (𝜓 → (𝐸𝑁𝐹𝑁𝐸𝐹))
mdetunilem6.gh ((𝜓𝑏𝑁) → (𝐺𝐾𝐻𝐾))
mdetunilem6.i ((𝜓𝑎𝑁𝑏𝑁) → 𝐼𝐾)
Assertion
Ref Expression
mdetunilem6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐺,𝑎   𝐻,𝑎   𝑥,𝐼,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑏)   𝐼(𝑎,𝑏)

Proof of Theorem mdetunilem6
StepHypRef Expression
1 mdetuni.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 mdetuni.b . . . . 5 𝐵 = (Base‘𝐴)
3 mdetuni.k . . . . 5 𝐾 = (Base‘𝑅)
4 mdetuni.0g . . . . 5 0 = (0g𝑅)
5 mdetuni.1r . . . . 5 1 = (1r𝑅)
6 mdetuni.pg . . . . 5 + = (+g𝑅)
7 mdetuni.tg . . . . 5 · = (.r𝑅)
8 mdetuni.n . . . . 5 (𝜑𝑁 ∈ Fin)
9 mdetuni.r . . . . 5 (𝜑𝑅 ∈ Ring)
10 mdetuni.ff . . . . 5 (𝜑𝐷:𝐵𝐾)
11 mdetuni.al . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
12 mdetuni.li . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
13 mdetuni.sc . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
14 mdetunilem6.ph . . . . 5 (𝜓𝜑)
15 mdetunilem6.ef . . . . . 6 (𝜓 → (𝐸𝑁𝐹𝑁𝐸𝐹))
1615simp1d 1138 . . . . 5 (𝜓𝐸𝑁)
17 mdetunilem6.gh . . . . . . . 8 ((𝜓𝑏𝑁) → (𝐺𝐾𝐻𝐾))
1817simprd 498 . . . . . . 7 ((𝜓𝑏𝑁) → 𝐻𝐾)
19183adant2 1127 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
2017simpld 497 . . . . . . 7 ((𝜓𝑏𝑁) → 𝐺𝐾)
21203adant2 1127 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
22 ringgrp 19305 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2314, 9, 223syl 18 . . . . . . . . . 10 (𝜓𝑅 ∈ Grp)
2423adantr 483 . . . . . . . . 9 ((𝜓𝑏𝑁) → 𝑅 ∈ Grp)
253, 6grpcl 18114 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝐻𝐾𝐺𝐾) → (𝐻 + 𝐺) ∈ 𝐾)
2624, 18, 20, 25syl3anc 1367 . . . . . . . 8 ((𝜓𝑏𝑁) → (𝐻 + 𝐺) ∈ 𝐾)
27263adant2 1127 . . . . . . 7 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻 + 𝐺) ∈ 𝐾)
28 mdetunilem6.i . . . . . . 7 ((𝜓𝑎𝑁𝑏𝑁) → 𝐼𝐾)
2927, 28ifcld 4515 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾)
3019, 21, 293jca 1124 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 30mdetunilem5 21228 . . . 4 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))))
321, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 26, 28mdetunilem2 21225 . . . 4 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = 0 )
3315simp2d 1139 . . . . . . . 8 (𝜓𝐹𝑁)
3419, 28ifcld 4515 . . . . . . . . 9 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾)
3519, 21, 343jca 1124 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 35mdetunilem5 21228 . . . . . . 7 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))))
3715simp3d 1140 . . . . . . . . . . 11 (𝜓𝐸𝐹)
3837necomd 3074 . . . . . . . . . 10 (𝜓𝐹𝐸)
3933, 16, 383jca 1124 . . . . . . . . 9 (𝜓 → (𝐹𝑁𝐸𝑁𝐹𝐸))
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 39, 18, 28mdetunilem2 21225 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) = 0 )
4140oveq1d 7174 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))))
4237neneqd 3024 . . . . . . . . . . . . . 14 (𝜓 → ¬ 𝐸 = 𝐹)
43 eqtr2 2845 . . . . . . . . . . . . . 14 ((𝑎 = 𝐸𝑎 = 𝐹) → 𝐸 = 𝐹)
4442, 43nsyl 142 . . . . . . . . . . . . 13 (𝜓 → ¬ (𝑎 = 𝐸𝑎 = 𝐹))
45443ad2ant1 1129 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → ¬ (𝑎 = 𝐸𝑎 = 𝐹))
46 ifcomnan 4524 . . . . . . . . . . . 12 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))
4745, 46syl 17 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))
4847mpoeq3dva 7234 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))
4948fveq2d 6677 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5014, 10syl 17 . . . . . . . . . 10 (𝜓𝐷:𝐵𝐾)
5114, 8syl 17 . . . . . . . . . . 11 (𝜓𝑁 ∈ Fin)
5221, 28ifcld 4515 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, 𝐺, 𝐼) ∈ 𝐾)
5319, 52ifcld 4515 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) ∈ 𝐾)
541, 3, 2, 51, 23, 53matbas2d 21035 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) ∈ 𝐵)
5550, 54ffvelrnd 6855 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾)
5649, 55eqeltrrd 2917 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾)
573, 6, 4grplid 18136 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾) → ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5823, 56, 57syl2anc 586 . . . . . . 7 (𝜓 → ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5936, 41, 583eqtrd 2863 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
60 ifcomnan 4524 . . . . . . . . 9 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))
6145, 60syl 17 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))
6261mpoeq3dva 7234 . . . . . . 7 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼))))
6362fveq2d 6677 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))))
6459, 63, 493eqtr4d 2869 . . . . 5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))))
6521, 28ifcld 4515 . . . . . . . . 9 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾)
6619, 21, 653jca 1124 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾))
671, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 66mdetunilem5 21228 . . . . . . 7 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))))
681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 39, 20, 28mdetunilem2 21225 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼)))) = 0 )
6968oveq2d 7175 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ))
70 ifcomnan 4524 . . . . . . . . . . . 12 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))
7145, 70syl 17 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))
7271mpoeq3dva 7234 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))))
7372fveq2d 6677 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
7419, 28ifcld 4515 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, 𝐻, 𝐼) ∈ 𝐾)
7521, 74ifcld 4515 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) ∈ 𝐾)
761, 3, 2, 51, 23, 75matbas2d 21035 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) ∈ 𝐵)
7750, 76ffvelrnd 6855 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾)
7873, 77eqeltrrd 2917 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾)
793, 6, 4grprid 18137 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8023, 78, 79syl2anc 586 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8167, 69, 803eqtrd 2863 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
82 ifcomnan 4524 . . . . . . . . 9 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))
8345, 82syl 17 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))
8483mpoeq3dva 7234 . . . . . . 7 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼))))
8584fveq2d 6677 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8681, 85, 733eqtr4d 2869 . . . . 5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))
8764, 86oveq12d 7177 . . . 4 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))))
8831, 32, 873eqtr3rd 2868 . . 3 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 )
89 eqid 2824 . . . . 5 (invg𝑅) = (invg𝑅)
903, 6, 4, 89grpinvid1 18157 . . . 4 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾 ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾) → (((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ))
9123, 55, 77, 90syl3anc 1367 . . 3 (𝜓 → (((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ))
9288, 91mpbird 259 . 2 (𝜓 → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))
9392eqcomd 2830 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  cdif 3936  ifcif 4470  {csn 4570   × cxp 5556  cres 5560  wf 6354  cfv 6358  (class class class)co 7159  cmpo 7161  f cof 7410  Fincfn 8512  Basecbs 16486  +gcplusg 16568  .rcmulr 16569  0gc0g 16716  Grpcgrp 18106  invgcminusg 18107  1rcur 19254  Ringcrg 19300   Mat cmat 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-prds 16724  df-pws 16726  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-ring 19302  df-sra 19947  df-rgmod 19948  df-dsmm 20879  df-frlm 20894  df-mat 21020
This theorem is referenced by:  mdetunilem7  21230
  Copyright terms: Public domain W3C validator