MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem7 Structured version   Visualization version   GIF version

Theorem mdetunilem7 20191
Description: Lemma for mdetuni 20195. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
Assertion
Ref Expression
mdetunilem7 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem mdetunilem7
Dummy variables 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6087 . . . . . 6 (𝑐 = 𝑑 → (𝑐𝑎) = (𝑑𝑎))
21oveq1d 6542 . . . . 5 (𝑐 = 𝑑 → ((𝑐𝑎)𝐹𝑏) = ((𝑑𝑎)𝐹𝑏))
32mpt2eq3dv 6597 . . . 4 (𝑐 = 𝑑 → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))
43fveq2d 6092 . . 3 (𝑐 = 𝑑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))
5 fveq2 6088 . . . 4 (𝑐 = 𝑑 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑))
65oveq1d 6542 . . 3 (𝑐 = 𝑑 → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹)))
74, 6eqeq12d 2625 . 2 (𝑐 = 𝑑 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
8 fveq1 6087 . . . . . 6 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝑐𝑎) = ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎))
98oveq1d 6542 . . . . 5 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((𝑐𝑎)𝐹𝑏) = (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))
109mpt2eq3dv 6597 . . . 4 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)))
1110fveq2d 6092 . . 3 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))))
12 fveq2 6088 . . . 4 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)))
1312oveq1d 6542 . . 3 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
1411, 13eqeq12d 2625 . 2 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹))))
15 fveq1 6087 . . . . . 6 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝑐𝑎) = ((0g‘(SymGrp‘𝑁))‘𝑎))
1615oveq1d 6542 . . . . 5 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((𝑐𝑎)𝐹𝑏) = (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))
1716mpt2eq3dv 6597 . . . 4 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)))
1817fveq2d 6092 . . 3 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))))
19 fveq2 6088 . . . 4 (𝑐 = (0g‘(SymGrp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))))
2019oveq1d 6542 . . 3 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)))
2118, 20eqeq12d 2625 . 2 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹))))
22 fveq1 6087 . . . . . 6 (𝑐 = 𝐸 → (𝑐𝑎) = (𝐸𝑎))
2322oveq1d 6542 . . . . 5 (𝑐 = 𝐸 → ((𝑐𝑎)𝐹𝑏) = ((𝐸𝑎)𝐹𝑏))
2423mpt2eq3dv 6597 . . . 4 (𝑐 = 𝐸 → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏)))
2524fveq2d 6092 . . 3 (𝑐 = 𝐸 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))))
26 fveq2 6088 . . . 4 (𝑐 = 𝐸 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸))
2726oveq1d 6542 . . 3 (𝑐 = 𝐸 → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
2825, 27eqeq12d 2625 . 2 (𝑐 = 𝐸 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹))))
29 eqid 2610 . 2 (0g‘(SymGrp‘𝑁)) = (0g‘(SymGrp‘𝑁))
30 eqid 2610 . 2 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
31 eqid 2610 . 2 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
32 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
33323ad2ant1 1075 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝑁 ∈ Fin)
34 eqid 2610 . . . 4 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3534symggrp 17592 . . 3 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
36 grpmnd 17201 . . 3 ((SymGrp‘𝑁) ∈ Grp → (SymGrp‘𝑁) ∈ Mnd)
3733, 35, 363syl 18 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (SymGrp‘𝑁) ∈ Mnd)
38 eqid 2610 . . . 4 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
3938, 34, 31symgtrf 17661 . . 3 ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
4039a1i 11 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)))
41 eqid 2610 . . . . . 6 (mrCls‘(SubMnd‘(SymGrp‘𝑁))) = (mrCls‘(SubMnd‘(SymGrp‘𝑁)))
4238, 34, 31, 41symggen2 17663 . . . . 5 (𝑁 ∈ Fin → ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)) = (Base‘(SymGrp‘𝑁)))
4332, 42syl 17 . . . 4 (𝜑 → ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)) = (Base‘(SymGrp‘𝑁)))
4443eqcomd 2616 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) = ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)))
45443ad2ant1 1075 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (Base‘(SymGrp‘𝑁)) = ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)))
46 mdetuni.r . . . . 5 (𝜑𝑅 ∈ Ring)
47463ad2ant1 1075 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝑅 ∈ Ring)
48 mdetuni.ff . . . . . 6 (𝜑𝐷:𝐵𝐾)
49483ad2ant1 1075 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐷:𝐵𝐾)
50 simp3 1056 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹𝐵)
5149, 50ffvelrnd 6253 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷𝐹) ∈ 𝐾)
52 mdetuni.k . . . . 5 𝐾 = (Base‘𝑅)
53 mdetuni.tg . . . . 5 · = (.r𝑅)
54 mdetuni.1r . . . . 5 1 = (1r𝑅)
5552, 53, 54ringlidm 18343 . . . 4 ((𝑅 ∈ Ring ∧ (𝐷𝐹) ∈ 𝐾) → ( 1 · (𝐷𝐹)) = (𝐷𝐹))
5647, 51, 55syl2anc 691 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ( 1 · (𝐷𝐹)) = (𝐷𝐹))
57 zrhpsgnmhm 19697 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
5846, 32, 57syl2anc 691 . . . . . 6 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
59 eqid 2610 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
6059, 54ringidval 18275 . . . . . . 7 1 = (0g‘(mulGrp‘𝑅))
6129, 60mhm0 17115 . . . . . 6 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
6258, 61syl 17 . . . . 5 (𝜑 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
63623ad2ant1 1075 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
6463oveq1d 6542 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)) = ( 1 · (𝐷𝐹)))
6534symgid 17593 . . . . . . . . . . . 12 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
6632, 65syl 17 . . . . . . . . . . 11 (𝜑 → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
67663ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
68673ad2ant1 1075 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
6968fveq1d 6090 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (( I ↾ 𝑁)‘𝑎) = ((0g‘(SymGrp‘𝑁))‘𝑎))
70 simp2 1055 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
71 fvresi 6322 . . . . . . . . 9 (𝑎𝑁 → (( I ↾ 𝑁)‘𝑎) = 𝑎)
7270, 71syl 17 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (( I ↾ 𝑁)‘𝑎) = 𝑎)
7369, 72eqtr3d 2646 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → ((0g‘(SymGrp‘𝑁))‘𝑎) = 𝑎)
7473oveq1d 6542 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏) = (𝑎𝐹𝑏))
7574mpt2eq3dva 6595 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
76 mdetuni.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
77 mdetuni.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
7876, 52, 77matbas2i 19995 . . . . . . . 8 (𝐹𝐵𝐹 ∈ (𝐾𝑚 (𝑁 × 𝑁)))
79783ad2ant3 1077 . . . . . . 7 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 ∈ (𝐾𝑚 (𝑁 × 𝑁)))
80 elmapi 7743 . . . . . . 7 (𝐹 ∈ (𝐾𝑚 (𝑁 × 𝑁)) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
81 ffn 5944 . . . . . . 7 (𝐹:(𝑁 × 𝑁)⟶𝐾𝐹 Fn (𝑁 × 𝑁))
8279, 80, 813syl 18 . . . . . 6 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 Fn (𝑁 × 𝑁))
83 fnov 6644 . . . . . 6 (𝐹 Fn (𝑁 × 𝑁) ↔ 𝐹 = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
8482, 83sylib 207 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
8575, 84eqtr4d 2647 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) = 𝐹)
8685fveq2d 6092 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = (𝐷𝐹))
8756, 64, 863eqtr4rd 2655 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)))
88 simp2 1055 . . . . . . . . . . . 12 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑑 ∈ (Base‘(SymGrp‘𝑁)))
8939sseli 3564 . . . . . . . . . . . . 13 (𝑒 ∈ ran (pmTrsp‘𝑁) → 𝑒 ∈ (Base‘(SymGrp‘𝑁)))
90893ad2ant3 1077 . . . . . . . . . . . 12 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ (Base‘(SymGrp‘𝑁)))
9134, 31, 30symgov 17582 . . . . . . . . . . . 12 ((𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ (Base‘(SymGrp‘𝑁))) → (𝑑(+g‘(SymGrp‘𝑁))𝑒) = (𝑑𝑒))
9288, 90, 91syl2anc 691 . . . . . . . . . . 11 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝑑(+g‘(SymGrp‘𝑁))𝑒) = (𝑑𝑒))
9392fveq1d 6090 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = ((𝑑𝑒)‘𝑎))
94933ad2ant1 1075 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = ((𝑑𝑒)‘𝑎))
9534, 31symgbasf1o 17575 . . . . . . . . . . . 12 (𝑒 ∈ (Base‘(SymGrp‘𝑁)) → 𝑒:𝑁1-1-onto𝑁)
96 f1of 6035 . . . . . . . . . . . 12 (𝑒:𝑁1-1-onto𝑁𝑒:𝑁𝑁)
9790, 95, 963syl 18 . . . . . . . . . . 11 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒:𝑁𝑁)
98973ad2ant1 1075 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → 𝑒:𝑁𝑁)
99 simp2 1055 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
100 fvco3 6170 . . . . . . . . . 10 ((𝑒:𝑁𝑁𝑎𝑁) → ((𝑑𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
10198, 99, 100syl2anc 691 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
10294, 101eqtrd 2644 . . . . . . . 8 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
103102oveq1d 6542 . . . . . . 7 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏) = ((𝑑‘(𝑒𝑎))𝐹𝑏))
104103mpt2eq3dva 6595 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏)))
105104fveq2d 6092 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))))
10634, 31symgbasf 17576 . . . . . 6 (𝑑 ∈ (Base‘(SymGrp‘𝑁)) → 𝑑:𝑁𝑁)
107 eqid 2610 . . . . . . . . 9 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
108107, 38pmtrrn2 17652 . . . . . . . 8 (𝑒 ∈ ran (pmTrsp‘𝑁) → ∃𝑐𝑁𝑓𝑁 (𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})))
109 mdetuni.0g . . . . . . . . . . . . . 14 0 = (0g𝑅)
110 mdetuni.pg . . . . . . . . . . . . . 14 + = (+g𝑅)
111 mdetuni.al . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
112 mdetuni.li . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
113 mdetuni.sc . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
114 simpll1 1093 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝜑)
115 df-3an 1033 . . . . . . . . . . . . . . . 16 ((𝑐𝑁𝑓𝑁𝑐𝑓) ↔ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓))
116115biimpri 217 . . . . . . . . . . . . . . 15 (((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓) → (𝑐𝑁𝑓𝑁𝑐𝑓))
117116adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑐𝑁𝑓𝑁𝑐𝑓))
11879, 80syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
119118adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
120119ad2antrr 758 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
121 simpllr 795 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑑:𝑁𝑁)
122 simprlr 799 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑓𝑁)
123122adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑓𝑁)
124121, 123ffvelrnd 6253 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (𝑑𝑓) ∈ 𝑁)
125 simpr 476 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑏𝑁)
126120, 124, 125fovrnd 6682 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → ((𝑑𝑓)𝐹𝑏) ∈ 𝐾)
127 simprll 798 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑁)
128127adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑐𝑁)
129121, 128ffvelrnd 6253 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (𝑑𝑐) ∈ 𝑁)
130120, 129, 125fovrnd 6682 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → ((𝑑𝑐)𝐹𝑏) ∈ 𝐾)
131126, 130jca 553 . . . . . . . . . . . . . 14 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (((𝑑𝑓)𝐹𝑏) ∈ 𝐾 ∧ ((𝑑𝑐)𝐹𝑏) ∈ 𝐾))
132118ad2antrr 758 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
1331323ad2ant1 1075 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
134 simp1lr 1118 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑑:𝑁𝑁)
135 simp2 1055 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
136134, 135ffvelrnd 6253 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → (𝑑𝑎) ∈ 𝑁)
137 simp3 1056 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
138133, 136, 137fovrnd 6682 . . . . . . . . . . . . . 14 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑𝑎)𝐹𝑏) ∈ 𝐾)
13976, 77, 52, 109, 54, 110, 53, 32, 46, 48, 111, 112, 113, 114, 117, 131, 138mdetunilem6 20190 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))))
140 simpl1 1057 . . . . . . . . . . . . . . 15 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → 𝜑)
141 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑐 → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐))
14232adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑁 ∈ Fin)
143 simprll 798 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑁)
144 simprlr 799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑓𝑁)
145 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑓)
146107pmtrprfv 17645 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ (𝑐𝑁𝑓𝑁𝑐𝑓)) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
147142, 143, 144, 145, 146syl13anc 1320 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
149141, 148sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑓)
150149fveq2d 6092 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑓))
151150oveq1d 6542 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑓)𝐹𝑏))
152 iftrue 4042 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑓)𝐹𝑏))
153152adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑓)𝐹𝑏))
154151, 153eqtr4d 2647 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
155 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑓 → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓))
156 prcom 4211 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {𝑐, 𝑓} = {𝑓, 𝑐}
157156fveq2i 6091 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) = ((pmTrsp‘𝑁)‘{𝑓, 𝑐})
158157fveq1i 6089 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓) = (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓)
15932ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑁 ∈ Fin)
160 simplrl 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (𝑐𝑁𝑓𝑁))
161160simprd 478 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑓𝑁)
162160simpld 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑐𝑁)
163 simplrr 797 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑐𝑓)
164163necomd 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑓𝑐)
165107pmtrprfv 17645 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ Fin ∧ (𝑓𝑁𝑐𝑁𝑓𝑐)) → (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) = 𝑐)
166159, 161, 162, 164, 165syl13anc 1320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) = 𝑐)
167158, 166syl5eq 2656 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓) = 𝑐)
168155, 167sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑐)
169168fveq2d 6092 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑐))
170169oveq1d 6542 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑐)𝐹𝑏))
171 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑐)𝐹𝑏))
172171adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑐)𝐹𝑏))
173170, 172eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
174173adantlr 747 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
175 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑎 ∈ V
176175elpr 4146 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ {𝑐, 𝑓} ↔ (𝑎 = 𝑐𝑎 = 𝑓))
177176notbii 309 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ {𝑐, 𝑓} ↔ ¬ (𝑎 = 𝑐𝑎 = 𝑓))
178 ioran 510 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (𝑎 = 𝑐𝑎 = 𝑓) ↔ (¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓))
179177, 178sylbbr 225 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ {𝑐, 𝑓})
180179adantll 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ {𝑐, 𝑓})
181 prssi 4293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑐𝑁𝑓𝑁) → {𝑐, 𝑓} ⊆ 𝑁)
182160, 181syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → {𝑐, 𝑓} ⊆ 𝑁)
183 pr2ne 8689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐𝑁𝑓𝑁) → ({𝑐, 𝑓} ≈ 2𝑜𝑐𝑓))
184160, 183syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ({𝑐, 𝑓} ≈ 2𝑜𝑐𝑓))
185163, 184mpbird 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → {𝑐, 𝑓} ≈ 2𝑜)
186107pmtrmvd 17648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ {𝑐, 𝑓} ⊆ 𝑁 ∧ {𝑐, 𝑓} ≈ 2𝑜) → dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) = {𝑐, 𝑓})
187159, 182, 185, 186syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) = {𝑐, 𝑓})
188187eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ 𝑎 ∈ {𝑐, 𝑓}))
189188notbid 307 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ ¬ 𝑎 ∈ {𝑐, 𝑓}))
190189ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ ¬ 𝑎 ∈ {𝑐, 𝑓}))
191180, 190mpbird 246 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ))
192107pmtrf 17647 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ Fin ∧ {𝑐, 𝑓} ⊆ 𝑁 ∧ {𝑐, 𝑓} ≈ 2𝑜) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁𝑁)
193159, 182, 185, 192syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁𝑁)
194 ffn 5944 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁𝑁 → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁)
195193, 194syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁)
196 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑎𝑁)
197 fnelnfp 6326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁𝑎𝑁) → (𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) ≠ 𝑎))
198197necon2bbid 2825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁𝑎𝑁) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
199195, 196, 198syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
200199ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
201191, 200mpbird 246 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎)
202201fveq2d 6092 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑎))
203202oveq1d 6542 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑎)𝐹𝑏))
204 iffalse 4045 . . . . . . . . . . . . . . . . . . . . . 22 𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
205204adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
206203, 205eqtr4d 2647 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
207174, 206pm2.61dan 828 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
208 iffalse 4045 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
209208adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
210207, 209eqtr4d 2647 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
211154, 210pm2.61dan 828 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
2122113adant3 1074 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
213212mpt2eq3dva 6595 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
214140, 213sylan 487 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
215214fveq2d 6092 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))))
216 fveq2 6088 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑐 → (𝑑𝑎) = (𝑑𝑐))
217216oveq1d 6542 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = ((𝑑𝑐)𝐹𝑏))
218 iftrue 4042 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑐)𝐹𝑏))
219217, 218eqtr4d 2647 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
220 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑓 → (𝑑𝑎) = (𝑑𝑓))
221220oveq1d 6542 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = ((𝑑𝑓)𝐹𝑏))
222 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑓)𝐹𝑏))
223221, 222eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
224223adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑎 = 𝑐𝑎 = 𝑓) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
225 iffalse 4045 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
226225eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . 22 𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
227226adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
228224, 227pm2.61dan 828 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
229 iffalse 4045 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
230228, 229eqtr4d 2647 . . . . . . . . . . . . . . . . . . 19 𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
231219, 230pm2.61i 175 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
232231a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑎𝑁𝑏𝑁) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
233232mpt2eq3ia 6596 . . . . . . . . . . . . . . . 16 (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
234233fveq2i 6091 . . . . . . . . . . . . . . 15 (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
235234fveq2i 6091 . . . . . . . . . . . . . 14 ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))))
236235a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))))
237139, 215, 2363eqtr4d 2654 . . . . . . . . . . . 12 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
238 fveq1 6087 . . . . . . . . . . . . . . . . 17 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑒𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))
239238fveq2d 6092 . . . . . . . . . . . . . . . 16 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑑‘(𝑒𝑎)) = (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)))
240239oveq1d 6542 . . . . . . . . . . . . . . 15 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → ((𝑑‘(𝑒𝑎))𝐹𝑏) = ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))
241240mpt2eq3dv 6597 . . . . . . . . . . . . . 14 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)))
242241fveq2d 6092 . . . . . . . . . . . . 13 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))))
243242eqeq1d 2612 . . . . . . . . . . . 12 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
244237, 243syl5ibrcom 236 . . . . . . . . . . 11 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
245244expr 641 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ (𝑐𝑁𝑓𝑁)) → (𝑐𝑓 → (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))))
246245impd 446 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ (𝑐𝑁𝑓𝑁)) → ((𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
247246rexlimdvva 3020 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → (∃𝑐𝑁𝑓𝑁 (𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
248108, 247syl5 33 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → (𝑒 ∈ ran (pmTrsp‘𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
2492483impia 1253 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
250106, 249syl3an2 1352 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
251105, 250eqtrd 2644 . . . 4 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
252251adantr 480 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
253 fveq2 6088 . . . 4 ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹)) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
254253adantl 481 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
255 eqid 2610 . . . . . 6 (invg𝑅) = (invg𝑅)
256473ad2ant1 1075 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑅 ∈ Ring)
257583ad2ant1 1075 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2582573ad2ant1 1075 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
25959, 52mgpbas 18267 . . . . . . . . 9 𝐾 = (Base‘(mulGrp‘𝑅))
26031, 259mhmf 17112 . . . . . . . 8 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
261258, 260syl 17 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
262261, 88ffvelrnd 6253 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ∈ 𝐾)
263493ad2ant1 1075 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝐷:𝐵𝐾)
264 simp13 1086 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝐹𝐵)
265263, 264ffvelrnd 6253 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷𝐹) ∈ 𝐾)
26652, 53, 255, 256, 262, 265ringmneg1 18368 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) · (𝐷𝐹)) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
26759, 53mgpplusg 18265 . . . . . . . . 9 · = (+g‘(mulGrp‘𝑅))
26831, 30, 267mhmlin 17114 . . . . . . . 8 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)))
269258, 88, 90, 268syl3anc 1318 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)))
270333ad2ant1 1075 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑁 ∈ Fin)
271 simp3 1056 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ran (pmTrsp‘𝑁))
27234, 31, 38pmtrodpm 19710 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
273270, 271, 272syl2anc 691 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
274 eqid 2610 . . . . . . . . . 10 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
275 eqid 2610 . . . . . . . . . 10 (pmSgn‘𝑁) = (pmSgn‘𝑁)
276274, 275, 54, 31, 255zrhpsgnodpm 19705 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒) = ((invg𝑅)‘ 1 ))
277256, 270, 273, 276syl3anc 1318 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒) = ((invg𝑅)‘ 1 ))
278277oveq2d 6543 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · ((invg𝑅)‘ 1 )))
27952, 53, 54, 255, 256, 262rngnegr 18367 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · ((invg𝑅)‘ 1 )) = ((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)))
280269, 278, 2793eqtrrd 2649 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)))
281280oveq1d 6542 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
282266, 281eqtr3d 2646 . . . 4 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
283282adantr 480 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
284252, 254, 2833eqtrd 2648 . 2 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
285 simp2 1055 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐸:𝑁1-1-onto𝑁)
28634, 31elsymgbas 17574 . . . 4 (𝑁 ∈ Fin → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
28733, 286syl 17 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
288285, 287mpbird 246 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐸 ∈ (Base‘(SymGrp‘𝑁)))
2897, 14, 21, 28, 29, 30, 31, 37, 40, 45, 87, 284, 288mrcmndind 17138 1 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  wss 3540  ifcif 4036  {csn 4125  {cpr 4127   class class class wbr 4578   I cid 4938   × cxp 5026  dom cdm 5028  ran crn 5029  cres 5030  ccom 5032   Fn wfn 5785  wf 5786  1-1-ontowf1o 5789  cfv 5790  (class class class)co 6527  cmpt2 6529  𝑓 cof 6771  2𝑜c2o 7419  𝑚 cmap 7722  cen 7816  Fincfn 7819  Basecbs 15644  +gcplusg 15717  .rcmulr 15718  0gc0g 15872  mrClscmrc 16015  Mndcmnd 17066   MndHom cmhm 17105  SubMndcsubmnd 17106  Grpcgrp 17194  invgcminusg 17195  SymGrpcsymg 17569  pmTrspcpmtr 17633  pmSgncpsgn 17681  pmEvencevpm 17682  mulGrpcmgp 18261  1rcur 18273  Ringcrg 18319  ℤRHomczrh 19615   Mat cmat 19980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4368  df-int 4406  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-tpos 7217  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-sup 8209  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-rp 11668  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-hash 12938  df-word 13103  df-lsw 13104  df-concat 13105  df-s1 13106  df-substr 13107  df-splice 13108  df-reverse 13109  df-s2 13393  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-0g 15874  df-gsum 15875  df-prds 15880  df-pws 15882  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-mhm 17107  df-submnd 17108  df-grp 17197  df-minusg 17198  df-mulg 17313  df-subg 17363  df-ghm 17430  df-gim 17473  df-oppg 17548  df-symg 17570  df-pmtr 17634  df-psgn 17683  df-evpm 17684  df-cmn 17967  df-abl 17968  df-mgp 18262  df-ur 18274  df-ring 18321  df-cring 18322  df-oppr 18395  df-dvdsr 18413  df-unit 18414  df-invr 18444  df-dvr 18455  df-rnghom 18487  df-drng 18521  df-subrg 18550  df-sra 18942  df-rgmod 18943  df-cnfld 19517  df-zring 19587  df-zrh 19619  df-dsmm 19843  df-frlm 19858  df-mat 19981
This theorem is referenced by:  mdetunilem8  20192
  Copyright terms: Public domain W3C validator