![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > mdi | Structured version Visualization version GIF version |
Description: Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdi | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdbr 29462 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | |
2 | 1 | biimpd 219 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 → ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
3 | sseq1 3767 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝑥 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) | |
4 | oveq1 6820 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑥 ∨ℋ 𝐴) = (𝐶 ∨ℋ 𝐴)) | |
5 | 4 | ineq1d 3956 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = ((𝐶 ∨ℋ 𝐴) ∩ 𝐵)) |
6 | oveq1 6820 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) | |
7 | 5, 6 | eqeq12d 2775 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵)))) |
8 | 3, 7 | imbi12d 333 | . . . . 5 ⊢ (𝑥 = 𝐶 → ((𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (𝐶 ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))))) |
9 | 8 | rspcv 3445 | . . . 4 ⊢ (𝐶 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) → (𝐶 ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))))) |
10 | 2, 9 | sylan9 692 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 → (𝐶 ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))))) |
11 | 10 | 3impa 1101 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 → (𝐶 ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))))) |
12 | 11 | imp32 448 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∩ cin 3714 ⊆ wss 3715 class class class wbr 4804 (class class class)co 6813 Cℋ cch 28095 ∨ℋ chj 28099 𝑀ℋ cmd 28132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-iota 6012 df-fv 6057 df-ov 6816 df-md 29448 |
This theorem is referenced by: mdsl3 29484 mdslmd3i 29500 mdexchi 29503 atabsi 29569 |
Copyright terms: Public domain | W3C validator |