HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsldmd1i Structured version   Visualization version   GIF version

Theorem mdsldmd1i 29039
Description: Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdsldmd1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀* 𝐷 ↔ (𝐶𝐵) 𝑀* (𝐷𝐵)))

Proof of Theorem mdsldmd1i
StepHypRef Expression
1 mdslmd.1 . . . . 5 𝐴C
2 mdslmd.2 . . . . 5 𝐵C
3 mddmd 29009 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ (⊥‘𝐴) 𝑀* (⊥‘𝐵)))
41, 2, 3mp2an 707 . . . 4 (𝐴 𝑀 𝐵 ↔ (⊥‘𝐴) 𝑀* (⊥‘𝐵))
5 dmdmd 29008 . . . . 5 ((𝐵C𝐴C ) → (𝐵 𝑀* 𝐴 ↔ (⊥‘𝐵) 𝑀 (⊥‘𝐴)))
62, 1, 5mp2an 707 . . . 4 (𝐵 𝑀* 𝐴 ↔ (⊥‘𝐵) 𝑀 (⊥‘𝐴))
74, 6anbi12ci 733 . . 3 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ↔ ((⊥‘𝐵) 𝑀 (⊥‘𝐴) ∧ (⊥‘𝐴) 𝑀* (⊥‘𝐵)))
8 mdslmd.3 . . . . . . 7 𝐶C
9 mdslmd.4 . . . . . . 7 𝐷C
108, 9chincli 28168 . . . . . 6 (𝐶𝐷) ∈ C
111, 10chsscon3i 28169 . . . . 5 (𝐴 ⊆ (𝐶𝐷) ↔ (⊥‘(𝐶𝐷)) ⊆ (⊥‘𝐴))
128, 9chdmm1i 28185 . . . . . 6 (⊥‘(𝐶𝐷)) = ((⊥‘𝐶) ∨ (⊥‘𝐷))
1312sseq1i 3608 . . . . 5 ((⊥‘(𝐶𝐷)) ⊆ (⊥‘𝐴) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))
1411, 13bitri 264 . . . 4 (𝐴 ⊆ (𝐶𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))
158, 9chjcli 28165 . . . . . 6 (𝐶 𝐷) ∈ C
161, 2chjcli 28165 . . . . . 6 (𝐴 𝐵) ∈ C
1715, 16chsscon3i 28169 . . . . 5 ((𝐶 𝐷) ⊆ (𝐴 𝐵) ↔ (⊥‘(𝐴 𝐵)) ⊆ (⊥‘(𝐶 𝐷)))
181, 2chdmj1i 28189 . . . . . . 7 (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵))
19 incom 3783 . . . . . . 7 ((⊥‘𝐴) ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ (⊥‘𝐴))
2018, 19eqtri 2643 . . . . . 6 (⊥‘(𝐴 𝐵)) = ((⊥‘𝐵) ∩ (⊥‘𝐴))
218, 9chdmj1i 28189 . . . . . 6 (⊥‘(𝐶 𝐷)) = ((⊥‘𝐶) ∩ (⊥‘𝐷))
2220, 21sseq12i 3610 . . . . 5 ((⊥‘(𝐴 𝐵)) ⊆ (⊥‘(𝐶 𝐷)) ↔ ((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)))
2317, 22bitri 264 . . . 4 ((𝐶 𝐷) ⊆ (𝐴 𝐵) ↔ ((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)))
2414, 23anbi12ci 733 . . 3 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)) ↔ (((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)) ∧ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴)))
252choccli 28015 . . . 4 (⊥‘𝐵) ∈ C
261choccli 28015 . . . 4 (⊥‘𝐴) ∈ C
278choccli 28015 . . . 4 (⊥‘𝐶) ∈ C
289choccli 28015 . . . 4 (⊥‘𝐷) ∈ C
2925, 26, 27, 28mdslmd2i 29038 . . 3 ((((⊥‘𝐵) 𝑀 (⊥‘𝐴) ∧ (⊥‘𝐴) 𝑀* (⊥‘𝐵)) ∧ (((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)) ∧ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))) → ((⊥‘𝐶) 𝑀 (⊥‘𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵))))
307, 24, 29syl2anb 496 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((⊥‘𝐶) 𝑀 (⊥‘𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵))))
31 dmdmd 29008 . . 3 ((𝐶C𝐷C ) → (𝐶 𝑀* 𝐷 ↔ (⊥‘𝐶) 𝑀 (⊥‘𝐷)))
328, 9, 31mp2an 707 . 2 (𝐶 𝑀* 𝐷 ↔ (⊥‘𝐶) 𝑀 (⊥‘𝐷))
338, 2chincli 28168 . . . 4 (𝐶𝐵) ∈ C
349, 2chincli 28168 . . . 4 (𝐷𝐵) ∈ C
35 dmdmd 29008 . . . 4 (((𝐶𝐵) ∈ C ∧ (𝐷𝐵) ∈ C ) → ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ (⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵))))
3633, 34, 35mp2an 707 . . 3 ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ (⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵)))
378, 2chdmm1i 28185 . . . 4 (⊥‘(𝐶𝐵)) = ((⊥‘𝐶) ∨ (⊥‘𝐵))
389, 2chdmm1i 28185 . . . 4 (⊥‘(𝐷𝐵)) = ((⊥‘𝐷) ∨ (⊥‘𝐵))
3937, 38breq12i 4622 . . 3 ((⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵)) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵)))
4036, 39bitri 264 . 2 ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵)))
4130, 32, 403bitr4g 303 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀* 𝐷 ↔ (𝐶𝐵) 𝑀* (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  cin 3554  wss 3555   class class class wbr 4613  cfv 5847  (class class class)co 6604   C cch 27635  cort 27636   chj 27639   𝑀 cmd 27672   𝑀* cdmd 27673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960  ax-hilex 27705  ax-hfvadd 27706  ax-hvcom 27707  ax-hvass 27708  ax-hv0cl 27709  ax-hvaddid 27710  ax-hfvmul 27711  ax-hvmulid 27712  ax-hvmulass 27713  ax-hvdistr1 27714  ax-hvdistr2 27715  ax-hvmul0 27716  ax-hfi 27785  ax-his1 27788  ax-his2 27789  ax-his3 27790  ax-his4 27791  ax-hcompl 27908
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-cn 20941  df-cnp 20942  df-lm 20943  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cfil 22961  df-cau 22962  df-cmet 22963  df-grpo 27196  df-gid 27197  df-ginv 27198  df-gdiv 27199  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-vs 27303  df-nmcv 27304  df-ims 27305  df-dip 27405  df-ssp 27426  df-ph 27517  df-cbn 27568  df-hnorm 27674  df-hba 27675  df-hvsub 27677  df-hlim 27678  df-hcau 27679  df-sh 27913  df-ch 27927  df-oc 27958  df-ch0 27959  df-shs 28016  df-chj 28018  df-md 28988  df-dmd 28989
This theorem is referenced by:  dmdcompli  29138
  Copyright terms: Public domain W3C validator