HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslj2i Structured version   Visualization version   GIF version

Theorem mdslj2i 29019
Description: Meet preservation of the reverse mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslle1.1 𝐴C
mdslle1.2 𝐵C
mdslle1.3 𝐶C
mdslle1.4 𝐷C
Assertion
Ref Expression
mdslj2i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶𝐷) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))

Proof of Theorem mdslj2i
StepHypRef Expression
1 mdslle1.3 . . . 4 𝐶C
2 mdslle1.4 . . . 4 𝐷C
3 mdslle1.1 . . . 4 𝐴C
41, 2, 3lejdiri 28238 . . 3 ((𝐶𝐷) ∨ 𝐴) ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴))
54a1i 11 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶𝐷) ∨ 𝐴) ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)))
6 ssin 3818 . . . . 5 (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ↔ (𝐴𝐵) ⊆ (𝐶𝐷))
76bicomi 214 . . . 4 ((𝐴𝐵) ⊆ (𝐶𝐷) ↔ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷))
8 mdslle1.2 . . . . . 6 𝐵C
91, 2, 8chlubi 28170 . . . . 5 ((𝐶𝐵𝐷𝐵) ↔ (𝐶 𝐷) ⊆ 𝐵)
109bicomi 214 . . . 4 ((𝐶 𝐷) ⊆ 𝐵 ↔ (𝐶𝐵𝐷𝐵))
117, 10anbi12i 732 . . 3 (((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) ↔ (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)))
12 simpr 477 . . . . . 6 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐵 𝑀* 𝐴)
133, 1chub2i 28169 . . . . . . . 8 𝐴 ⊆ (𝐶 𝐴)
143, 2chub2i 28169 . . . . . . . 8 𝐴 ⊆ (𝐷 𝐴)
1513, 14ssini 3819 . . . . . . 7 𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴))
1615a1i 11 . . . . . 6 (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) → 𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)))
171, 8, 3chlej1i 28172 . . . . . . . . 9 (𝐶𝐵 → (𝐶 𝐴) ⊆ (𝐵 𝐴))
188, 3chjcomi 28167 . . . . . . . . 9 (𝐵 𝐴) = (𝐴 𝐵)
1917, 18syl6sseq 3635 . . . . . . . 8 (𝐶𝐵 → (𝐶 𝐴) ⊆ (𝐴 𝐵))
20 ssinss1 3824 . . . . . . . 8 ((𝐶 𝐴) ⊆ (𝐴 𝐵) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵))
2119, 20syl 17 . . . . . . 7 (𝐶𝐵 → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵))
2221adantr 481 . . . . . 6 ((𝐶𝐵𝐷𝐵) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵))
231, 3chjcli 28156 . . . . . . . . 9 (𝐶 𝐴) ∈ C
242, 3chjcli 28156 . . . . . . . . 9 (𝐷 𝐴) ∈ C
2523, 24chincli 28159 . . . . . . . 8 ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∈ C
263, 8, 253pm3.2i 1237 . . . . . . 7 (𝐴C𝐵C ∧ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∈ C )
27 dmdsl3 29014 . . . . . . 7 (((𝐴C𝐵C ∧ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∈ C ) ∧ (𝐵 𝑀* 𝐴𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∧ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵))) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))
2826, 27mpan 705 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∧ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵)) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))
2912, 16, 22, 28syl3an 1365 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))
30 inss1 3816 . . . . . . . . 9 ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐶 𝐴)
31 ssrin 3821 . . . . . . . . 9 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐶 𝐴) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵))
3230, 31ax-mp 5 . . . . . . . 8 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵)
33 simpl 473 . . . . . . . . 9 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐴 𝑀 𝐵)
34 simpl 473 . . . . . . . . 9 (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) → (𝐴𝐵) ⊆ 𝐶)
35 simpl 473 . . . . . . . . 9 ((𝐶𝐵𝐷𝐵) → 𝐶𝐵)
363, 8, 13pm3.2i 1237 . . . . . . . . . 10 (𝐴C𝐵C𝐶C )
37 mdsl3 29015 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐶𝐶𝐵)) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
3836, 37mpan 705 . . . . . . . . 9 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐶𝐶𝐵) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
3933, 34, 35, 38syl3an 1365 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
4032, 39syl5sseq 3637 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ 𝐶)
41 inss2 3817 . . . . . . . . 9 ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐷 𝐴)
42 ssrin 3821 . . . . . . . . 9 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐷 𝐴) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ ((𝐷 𝐴) ∩ 𝐵))
4341, 42ax-mp 5 . . . . . . . 8 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ ((𝐷 𝐴) ∩ 𝐵)
44 simpr 477 . . . . . . . . 9 (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) → (𝐴𝐵) ⊆ 𝐷)
45 simpr 477 . . . . . . . . 9 ((𝐶𝐵𝐷𝐵) → 𝐷𝐵)
463, 8, 23pm3.2i 1237 . . . . . . . . . 10 (𝐴C𝐵C𝐷C )
47 mdsl3 29015 . . . . . . . . . 10 (((𝐴C𝐵C𝐷C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐷𝐷𝐵)) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
4846, 47mpan 705 . . . . . . . . 9 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐷𝐷𝐵) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
4933, 44, 45, 48syl3an 1365 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
5043, 49syl5sseq 3637 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ 𝐷)
5140, 50ssind 3820 . . . . . 6 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ (𝐶𝐷))
5225, 8chincli 28159 . . . . . . 7 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∈ C
531, 2chincli 28159 . . . . . . 7 (𝐶𝐷) ∈ C
5452, 53, 3chlej1i 28172 . . . . . 6 ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ (𝐶𝐷) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) ⊆ ((𝐶𝐷) ∨ 𝐴))
5551, 54syl 17 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) ⊆ ((𝐶𝐷) ∨ 𝐴))
5629, 55eqsstr3d 3624 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ ((𝐶𝐷) ∨ 𝐴))
57563expb 1263 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵))) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ ((𝐶𝐷) ∨ 𝐴))
5811, 57sylan2b 492 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ ((𝐶𝐷) ∨ 𝐴))
595, 58eqssd 3605 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶𝐷) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  cin 3559  wss 3560   class class class wbr 4618  (class class class)co 6605   C cch 27626   chj 27630   𝑀 cmd 27663   𝑀* cdmd 27664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cc 9202  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961  ax-hilex 27696  ax-hfvadd 27697  ax-hvcom 27698  ax-hvass 27699  ax-hv0cl 27700  ax-hvaddid 27701  ax-hfvmul 27702  ax-hvmulid 27703  ax-hvmulass 27704  ax-hvdistr1 27705  ax-hvdistr2 27706  ax-hvmul0 27707  ax-hfi 27776  ax-his1 27779  ax-his2 27780  ax-his3 27781  ax-his4 27782  ax-hcompl 27899
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-omul 7511  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-acn 8713  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-rlim 14149  df-sum 14346  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-cn 20936  df-cnp 20937  df-lm 20938  df-haus 21024  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cfil 22956  df-cau 22957  df-cmet 22958  df-grpo 27187  df-gid 27188  df-ginv 27189  df-gdiv 27190  df-ablo 27239  df-vc 27254  df-nv 27287  df-va 27290  df-ba 27291  df-sm 27292  df-0v 27293  df-vs 27294  df-nmcv 27295  df-ims 27296  df-dip 27396  df-ssp 27417  df-ph 27508  df-cbn 27559  df-hnorm 27665  df-hba 27666  df-hvsub 27668  df-hlim 27669  df-hcau 27670  df-sh 27904  df-ch 27918  df-oc 27949  df-ch0 27950  df-shs 28007  df-chj 28009  df-md 28979  df-dmd 28980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator