HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem1 Structured version   Visualization version   GIF version

Theorem mdsymlem1 28434
Description: Lemma for mdsymi 28442. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem1 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝𝐴)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝
Allowed substitution hint:   𝐶(𝑝)

Proof of Theorem mdsymlem1
StepHypRef Expression
1 mdsymlem1.1 . . . . . . 7 𝐴C
2 chub2 27539 . . . . . . 7 ((𝑝C𝐴C ) → 𝑝 ⊆ (𝐴 𝑝))
31, 2mpan2 702 . . . . . 6 (𝑝C𝑝 ⊆ (𝐴 𝑝))
4 mdsymlem1.3 . . . . . 6 𝐶 = (𝐴 𝑝)
53, 4syl6sseqr 3519 . . . . 5 (𝑝C𝑝𝐶)
6 mdsymlem1.2 . . . . . . . 8 𝐵C
71, 6chjcomi 27499 . . . . . . 7 (𝐴 𝐵) = (𝐵 𝐴)
87sseq2i 3497 . . . . . 6 (𝑝 ⊆ (𝐴 𝐵) ↔ 𝑝 ⊆ (𝐵 𝐴))
98biimpi 204 . . . . 5 (𝑝 ⊆ (𝐴 𝐵) → 𝑝 ⊆ (𝐵 𝐴))
105, 9anim12i 587 . . . 4 ((𝑝C𝑝 ⊆ (𝐴 𝐵)) → (𝑝𝐶𝑝 ⊆ (𝐵 𝐴)))
11 ssin 3700 . . . 4 ((𝑝𝐶𝑝 ⊆ (𝐵 𝐴)) ↔ 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
1210, 11sylib 206 . . 3 ((𝑝C𝑝 ⊆ (𝐴 𝐵)) → 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
1312ad2ant2rl 780 . 2 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
14 chjcl 27388 . . . . . . . . 9 ((𝐴C𝑝C ) → (𝐴 𝑝) ∈ C )
151, 14mpan 701 . . . . . . . 8 (𝑝C → (𝐴 𝑝) ∈ C )
164, 15syl5eqel 2596 . . . . . . 7 (𝑝C𝐶C )
1716adantr 479 . . . . . 6 ((𝑝C𝐵 𝑀* 𝐴) → 𝐶C )
18 chub1 27538 . . . . . . . . . 10 ((𝐴C𝑝C ) → 𝐴 ⊆ (𝐴 𝑝))
191, 18mpan 701 . . . . . . . . 9 (𝑝C𝐴 ⊆ (𝐴 𝑝))
2019, 4syl6sseqr 3519 . . . . . . . 8 (𝑝C𝐴𝐶)
2120anim2i 590 . . . . . . 7 ((𝐵 𝑀* 𝐴𝑝C ) → (𝐵 𝑀* 𝐴𝐴𝐶))
2221ancoms 467 . . . . . 6 ((𝑝C𝐵 𝑀* 𝐴) → (𝐵 𝑀* 𝐴𝐴𝐶))
23 dmdi 28333 . . . . . . . 8 (((𝐵C𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
246, 23mp3anl1 1409 . . . . . . 7 (((𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
251, 24mpanl1 711 . . . . . 6 ((𝐶C ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
2617, 22, 25syl2anc 690 . . . . 5 ((𝑝C𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
2726adantlr 746 . . . 4 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
28 incom 3670 . . . . . . 7 (𝐶𝐵) = (𝐵𝐶)
2928oveq1i 6436 . . . . . 6 ((𝐶𝐵) ∨ 𝐴) = ((𝐵𝐶) ∨ 𝐴)
30 chincl 27530 . . . . . . . . 9 ((𝐵C𝐶C ) → (𝐵𝐶) ∈ C )
316, 30mpan 701 . . . . . . . 8 (𝐶C → (𝐵𝐶) ∈ C )
32 chlejb1 27543 . . . . . . . . 9 (((𝐵𝐶) ∈ C𝐴C ) → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
331, 32mpan2 702 . . . . . . . 8 ((𝐵𝐶) ∈ C → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
3416, 31, 333syl 18 . . . . . . 7 (𝑝C → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
3534biimpa 499 . . . . . 6 ((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) → ((𝐵𝐶) ∨ 𝐴) = 𝐴)
3629, 35syl5eq 2560 . . . . 5 ((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) → ((𝐶𝐵) ∨ 𝐴) = 𝐴)
3736adantr 479 . . . 4 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = 𝐴)
3827, 37eqtr3d 2550 . . 3 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → (𝐶 ∩ (𝐵 𝐴)) = 𝐴)
3938adantrr 748 . 2 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → (𝐶 ∩ (𝐵 𝐴)) = 𝐴)
4013, 39sseqtrd 3508 1 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  cin 3443  wss 3444   class class class wbr 4481  (class class class)co 6426   C cch 26958   chj 26962   𝑀* cdmd 26996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297  ax-cc 9016  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769  ax-addf 9770  ax-mulf 9771  ax-hilex 27028  ax-hfvadd 27029  ax-hvcom 27030  ax-hvass 27031  ax-hv0cl 27032  ax-hvaddid 27033  ax-hfvmul 27034  ax-hvmulid 27035  ax-hvmulass 27036  ax-hvdistr1 27037  ax-hvdistr2 27038  ax-hvmul0 27039  ax-hfi 27108  ax-his1 27111  ax-his2 27112  ax-his3 27113  ax-his4 27114  ax-hcompl 27231
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-of 6671  df-om 6834  df-1st 6934  df-2nd 6935  df-supp 7058  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-2o 7324  df-oadd 7327  df-omul 7328  df-er 7505  df-map 7622  df-pm 7623  df-ixp 7671  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-fsupp 8035  df-fi 8076  df-sup 8107  df-inf 8108  df-oi 8174  df-card 8524  df-acn 8527  df-cda 8749  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-4 10836  df-5 10837  df-6 10838  df-7 10839  df-8 10840  df-9 10841  df-n0 11048  df-z 11119  df-dec 11234  df-uz 11428  df-q 11531  df-rp 11575  df-xneg 11688  df-xadd 11689  df-xmul 11690  df-ioo 11919  df-ico 11921  df-icc 11922  df-fz 12066  df-fzo 12203  df-fl 12323  df-seq 12532  df-exp 12591  df-hash 12848  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683  df-clim 13933  df-rlim 13934  df-sum 14134  df-struct 15581  df-ndx 15582  df-slot 15583  df-base 15584  df-sets 15585  df-ress 15586  df-plusg 15665  df-mulr 15666  df-starv 15667  df-sca 15668  df-vsca 15669  df-ip 15670  df-tset 15671  df-ple 15672  df-ds 15675  df-unif 15676  df-hom 15677  df-cco 15678  df-rest 15790  df-topn 15791  df-0g 15809  df-gsum 15810  df-topgen 15811  df-pt 15812  df-prds 15815  df-xrs 15869  df-qtop 15875  df-imas 15876  df-xps 15879  df-mre 15961  df-mrc 15962  df-acs 15964  df-mgm 16957  df-sgrp 16999  df-mnd 17010  df-submnd 17051  df-mulg 17256  df-cntz 17465  df-cmn 17926  df-psmet 19463  df-xmet 19464  df-met 19465  df-bl 19466  df-mopn 19467  df-fbas 19468  df-fg 19469  df-cnfld 19472  df-top 20424  df-bases 20425  df-topon 20426  df-topsp 20427  df-cld 20536  df-ntr 20537  df-cls 20538  df-nei 20615  df-cn 20744  df-cnp 20745  df-lm 20746  df-haus 20832  df-tx 21078  df-hmeo 21271  df-fil 21363  df-fm 21455  df-flim 21456  df-flf 21457  df-xms 21837  df-ms 21838  df-tms 21839  df-cfil 22725  df-cau 22726  df-cmet 22727  df-grpo 26469  df-gid 26470  df-ginv 26471  df-gdiv 26472  df-ablo 26524  df-vc 26539  df-nv 26587  df-va 26590  df-ba 26591  df-sm 26592  df-0v 26593  df-vs 26594  df-nmcv 26595  df-ims 26596  df-dip 26713  df-ssp 26737  df-ph 26830  df-cbn 26881  df-hnorm 26997  df-hba 26998  df-hvsub 27000  df-hlim 27001  df-hcau 27002  df-sh 27236  df-ch 27250  df-oc 27281  df-ch0 27282  df-shs 27339  df-chj 27341  df-dmd 28312
This theorem is referenced by:  mdsymlem2  28435
  Copyright terms: Public domain W3C validator