HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem3 Structured version   Visualization version   GIF version

Theorem mdsymlem3 29462
Description: Lemma for mdsymi 29468. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem3 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
Distinct variable groups:   𝑟,𝑞,𝐶   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟
Allowed substitution hint:   𝐶(𝑝)

Proof of Theorem mdsymlem3
StepHypRef Expression
1 ssin 3911 . . . . . . . . . 10 ((𝑟𝐵𝑟𝐶) ↔ 𝑟 ⊆ (𝐵𝐶))
2 mdsymlem1.3 . . . . . . . . . . . . 13 𝐶 = (𝐴 𝑝)
32sseq2i 3704 . . . . . . . . . . . 12 (𝑟𝐶𝑟 ⊆ (𝐴 𝑝))
43biimpi 206 . . . . . . . . . . 11 (𝑟𝐶𝑟 ⊆ (𝐴 𝑝))
54adantl 473 . . . . . . . . . 10 ((𝑟𝐵𝑟𝐶) → 𝑟 ⊆ (𝐴 𝑝))
61, 5sylbir 225 . . . . . . . . 9 (𝑟 ⊆ (𝐵𝐶) → 𝑟 ⊆ (𝐴 𝑝))
7 mdsymlem1.1 . . . . . . . . . . . . . 14 𝐴C
87atcvat4i 29454 . . . . . . . . . . . . 13 ((𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝐴 ≠ 0𝑟 ⊆ (𝐴 𝑝)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
98exp4b 633 . . . . . . . . . . . 12 (𝑟 ∈ HAtoms → (𝑝 ∈ HAtoms → (𝐴 ≠ 0 → (𝑟 ⊆ (𝐴 𝑝) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
109com34 91 . . . . . . . . . . 11 (𝑟 ∈ HAtoms → (𝑝 ∈ HAtoms → (𝑟 ⊆ (𝐴 𝑝) → (𝐴 ≠ 0 → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
1110com23 86 . . . . . . . . . 10 (𝑟 ∈ HAtoms → (𝑟 ⊆ (𝐴 𝑝) → (𝑝 ∈ HAtoms → (𝐴 ≠ 0 → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
1211imp4b 614 . . . . . . . . 9 ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝐴 𝑝)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
136, 12sylan2 492 . . . . . . . 8 ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝐵𝐶)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1413adantrr 755 . . . . . . 7 ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1514com12 32 . . . . . 6 ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1615adantlr 753 . . . . 5 (((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1716adantlr 753 . . . 4 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1817imp 444 . . 3 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞)))
19 nssne2 3736 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞𝐴 ∧ ¬ 𝑟𝐴) → 𝑞𝑟)
2019adantrl 754 . . . . . . . . . . . . . . . . . . . 20 ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑞𝑟)
21 atnemeq0 29434 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞𝑟 ↔ (𝑞𝑟) = 0))
2221ancoms 468 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → (𝑞𝑟 ↔ (𝑞𝑟) = 0))
2320, 22syl5ib 234 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
2423adantll 752 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
2524adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
26 atelch 29401 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ HAtoms → 𝑝C )
27 atelch 29401 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ HAtoms → 𝑞C )
28 chjcom 28563 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝C𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
2926, 27, 28syl2an 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → (𝑝 𝑞) = (𝑞 𝑝))
3029adantlr 753 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑝 𝑞) = (𝑞 𝑝))
3130sseq2d 3707 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) ↔ 𝑟 ⊆ (𝑞 𝑝)))
32 atexch 29438 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞C𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
3327, 32syl3an1 1440 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
34333com13 1118 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
35343expa 1111 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
3635expd 451 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑞 𝑝) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟))))
3731, 36sylbid 230 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟))))
3837imp 444 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟)))
3925, 38syld 47 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑝 ⊆ (𝑞 𝑟)))
4039expd 451 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑞𝐴 → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))
4140exp31 631 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞 ∈ HAtoms → (𝑟 ⊆ (𝑝 𝑞) → (𝑞𝐴 → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))))
4241com24 95 . . . . . . . . . . . . 13 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞𝐴 → (𝑟 ⊆ (𝑝 𝑞) → (𝑞 ∈ HAtoms → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))))
4342impd 446 . . . . . . . . . . . 12 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑞 ∈ HAtoms → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟)))))
4443com24 95 . . . . . . . . . . 11 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → 𝑝 ⊆ (𝑞 𝑟)))))
4544imp4b 614 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑝 ⊆ (𝑞 𝑟)))
4645anasss 682 . . . . . . . . 9 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑝 ⊆ (𝑞 𝑟)))
47 simprl 811 . . . . . . . . . . 11 ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑞𝐴)
4847a1i 11 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑞𝐴))
49 simpl 474 . . . . . . . . . . . . 13 ((𝑟𝐵𝑟𝐶) → 𝑟𝐵)
501, 49sylbir 225 . . . . . . . . . . . 12 (𝑟 ⊆ (𝐵𝐶) → 𝑟𝐵)
5150ad2antrl 766 . . . . . . . . . . 11 ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑟𝐵)
5251adantl 473 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → 𝑟𝐵)
5348, 52jctird 568 . . . . . . . . 9 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → (𝑞𝐴𝑟𝐵)))
5446, 53jcad 556 . . . . . . . 8 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))))
5554expd 451 . . . . . . 7 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5655adantlr 753 . . . . . 6 (((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5756adantlr 753 . . . . 5 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5857adantlr 753 . . . 4 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5958reximdvai 3085 . . 3 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))))
6018, 59mpd 15 . 2 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
61 mdsymlem1.2 . . . . . . 7 𝐵C
62 chjcl 28414 . . . . . . . . 9 ((𝐴C𝑝C ) → (𝐴 𝑝) ∈ C )
637, 62mpan 708 . . . . . . . 8 (𝑝C → (𝐴 𝑝) ∈ C )
642, 63syl5eqel 2775 . . . . . . 7 (𝑝C𝐶C )
65 chincl 28556 . . . . . . 7 ((𝐵C𝐶C ) → (𝐵𝐶) ∈ C )
6661, 64, 65sylancr 698 . . . . . 6 (𝑝C → (𝐵𝐶) ∈ C )
6726, 66syl 17 . . . . 5 (𝑝 ∈ HAtoms → (𝐵𝐶) ∈ C )
68 chrelat2 29427 . . . . 5 (((𝐵𝐶) ∈ C𝐴C ) → (¬ (𝐵𝐶) ⊆ 𝐴 ↔ ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)))
6967, 7, 68sylancl 697 . . . 4 (𝑝 ∈ HAtoms → (¬ (𝐵𝐶) ⊆ 𝐴 ↔ ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)))
7069biimpa 502 . . 3 ((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) → ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))
7170ad2antrr 764 . 2 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))
7260, 71reximddv 3088 1 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1564  wcel 2071  wne 2864  wrex 2983  cin 3647  wss 3648  (class class class)co 6733   C cch 27984   chj 27988  0c0h 27990  HAtomscat 28020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-inf2 8619  ax-cc 9338  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095  ax-addf 10096  ax-mulf 10097  ax-hilex 28054  ax-hfvadd 28055  ax-hvcom 28056  ax-hvass 28057  ax-hv0cl 28058  ax-hvaddid 28059  ax-hfvmul 28060  ax-hvmulid 28061  ax-hvmulass 28062  ax-hvdistr1 28063  ax-hvdistr2 28064  ax-hvmul0 28065  ax-hfi 28134  ax-his1 28137  ax-his2 28138  ax-his3 28139  ax-his4 28140  ax-hcompl 28257
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-fal 1570  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-iin 4599  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-se 5146  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-isom 5978  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-of 6982  df-om 7151  df-1st 7253  df-2nd 7254  df-supp 7384  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-1o 7648  df-2o 7649  df-oadd 7652  df-omul 7653  df-er 7830  df-map 7944  df-pm 7945  df-ixp 7994  df-en 8041  df-dom 8042  df-sdom 8043  df-fin 8044  df-fsupp 8360  df-fi 8401  df-sup 8432  df-inf 8433  df-oi 8499  df-card 8846  df-acn 8849  df-cda 9071  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-2 11160  df-3 11161  df-4 11162  df-5 11163  df-6 11164  df-7 11165  df-8 11166  df-9 11167  df-n0 11374  df-z 11459  df-dec 11575  df-uz 11769  df-q 11871  df-rp 11915  df-xneg 12028  df-xadd 12029  df-xmul 12030  df-ioo 12261  df-ico 12263  df-icc 12264  df-fz 12409  df-fzo 12549  df-fl 12676  df-seq 12885  df-exp 12944  df-hash 13201  df-cj 13927  df-re 13928  df-im 13929  df-sqrt 14063  df-abs 14064  df-clim 14307  df-rlim 14308  df-sum 14505  df-struct 15950  df-ndx 15951  df-slot 15952  df-base 15954  df-sets 15955  df-ress 15956  df-plusg 16045  df-mulr 16046  df-starv 16047  df-sca 16048  df-vsca 16049  df-ip 16050  df-tset 16051  df-ple 16052  df-ds 16055  df-unif 16056  df-hom 16057  df-cco 16058  df-rest 16174  df-topn 16175  df-0g 16193  df-gsum 16194  df-topgen 16195  df-pt 16196  df-prds 16199  df-xrs 16253  df-qtop 16258  df-imas 16259  df-xps 16261  df-mre 16337  df-mrc 16338  df-acs 16340  df-mgm 17332  df-sgrp 17374  df-mnd 17385  df-submnd 17426  df-mulg 17631  df-cntz 17839  df-cmn 18284  df-psmet 19829  df-xmet 19830  df-met 19831  df-bl 19832  df-mopn 19833  df-fbas 19834  df-fg 19835  df-cnfld 19838  df-top 20790  df-topon 20807  df-topsp 20828  df-bases 20841  df-cld 20914  df-ntr 20915  df-cls 20916  df-nei 20993  df-cn 21122  df-cnp 21123  df-lm 21124  df-haus 21210  df-tx 21456  df-hmeo 21649  df-fil 21740  df-fm 21832  df-flim 21833  df-flf 21834  df-xms 22215  df-ms 22216  df-tms 22217  df-cfil 23142  df-cau 23143  df-cmet 23144  df-grpo 27545  df-gid 27546  df-ginv 27547  df-gdiv 27548  df-ablo 27597  df-vc 27612  df-nv 27645  df-va 27648  df-ba 27649  df-sm 27650  df-0v 27651  df-vs 27652  df-nmcv 27653  df-ims 27654  df-dip 27754  df-ssp 27775  df-ph 27866  df-cbn 27917  df-hnorm 28023  df-hba 28024  df-hvsub 28026  df-hlim 28027  df-hcau 28028  df-sh 28262  df-ch 28276  df-oc 28307  df-ch0 28308  df-shs 28365  df-span 28366  df-chj 28367  df-chsup 28368  df-pjh 28452  df-cv 29336  df-at 29395
This theorem is referenced by:  mdsymlem4  29463
  Copyright terms: Public domain W3C validator