HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem3 Structured version   Visualization version   GIF version

Theorem mdsymlem3 29104
Description: Lemma for mdsymi 29110. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem3 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
Distinct variable groups:   𝑟,𝑞,𝐶   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟
Allowed substitution hint:   𝐶(𝑝)

Proof of Theorem mdsymlem3
StepHypRef Expression
1 ssin 3818 . . . . . . . . . 10 ((𝑟𝐵𝑟𝐶) ↔ 𝑟 ⊆ (𝐵𝐶))
2 mdsymlem1.3 . . . . . . . . . . . . 13 𝐶 = (𝐴 𝑝)
32sseq2i 3614 . . . . . . . . . . . 12 (𝑟𝐶𝑟 ⊆ (𝐴 𝑝))
43biimpi 206 . . . . . . . . . . 11 (𝑟𝐶𝑟 ⊆ (𝐴 𝑝))
54adantl 482 . . . . . . . . . 10 ((𝑟𝐵𝑟𝐶) → 𝑟 ⊆ (𝐴 𝑝))
61, 5sylbir 225 . . . . . . . . 9 (𝑟 ⊆ (𝐵𝐶) → 𝑟 ⊆ (𝐴 𝑝))
7 mdsymlem1.1 . . . . . . . . . . . . . 14 𝐴C
87atcvat4i 29096 . . . . . . . . . . . . 13 ((𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝐴 ≠ 0𝑟 ⊆ (𝐴 𝑝)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
98exp4b 631 . . . . . . . . . . . 12 (𝑟 ∈ HAtoms → (𝑝 ∈ HAtoms → (𝐴 ≠ 0 → (𝑟 ⊆ (𝐴 𝑝) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
109com34 91 . . . . . . . . . . 11 (𝑟 ∈ HAtoms → (𝑝 ∈ HAtoms → (𝑟 ⊆ (𝐴 𝑝) → (𝐴 ≠ 0 → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
1110com23 86 . . . . . . . . . 10 (𝑟 ∈ HAtoms → (𝑟 ⊆ (𝐴 𝑝) → (𝑝 ∈ HAtoms → (𝐴 ≠ 0 → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
1211imp4b 612 . . . . . . . . 9 ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝐴 𝑝)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
136, 12sylan2 491 . . . . . . . 8 ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝐵𝐶)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1413adantrr 752 . . . . . . 7 ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1514com12 32 . . . . . 6 ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1615adantlr 750 . . . . 5 (((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1716adantlr 750 . . . 4 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1817imp 445 . . 3 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞)))
19 nssne2 3646 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞𝐴 ∧ ¬ 𝑟𝐴) → 𝑞𝑟)
2019adantrl 751 . . . . . . . . . . . . . . . . . . . 20 ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑞𝑟)
21 atnemeq0 29076 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞𝑟 ↔ (𝑞𝑟) = 0))
2221ancoms 469 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → (𝑞𝑟 ↔ (𝑞𝑟) = 0))
2320, 22syl5ib 234 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
2423adantll 749 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
2524adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
26 atelch 29043 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ HAtoms → 𝑝C )
27 atelch 29043 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ HAtoms → 𝑞C )
28 chjcom 28205 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝C𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
2926, 27, 28syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → (𝑝 𝑞) = (𝑞 𝑝))
3029adantlr 750 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑝 𝑞) = (𝑞 𝑝))
3130sseq2d 3617 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) ↔ 𝑟 ⊆ (𝑞 𝑝)))
32 atexch 29080 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞C𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
3327, 32syl3an1 1356 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
34333com13 1267 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
35343expa 1262 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
3635expd 452 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑞 𝑝) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟))))
3731, 36sylbid 230 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟))))
3837imp 445 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟)))
3925, 38syld 47 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑝 ⊆ (𝑞 𝑟)))
4039expd 452 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑞𝐴 → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))
4140exp31 629 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞 ∈ HAtoms → (𝑟 ⊆ (𝑝 𝑞) → (𝑞𝐴 → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))))
4241com24 95 . . . . . . . . . . . . 13 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞𝐴 → (𝑟 ⊆ (𝑝 𝑞) → (𝑞 ∈ HAtoms → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))))
4342impd 447 . . . . . . . . . . . 12 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑞 ∈ HAtoms → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟)))))
4443com24 95 . . . . . . . . . . 11 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → 𝑝 ⊆ (𝑞 𝑟)))))
4544imp4b 612 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑝 ⊆ (𝑞 𝑟)))
4645anasss 678 . . . . . . . . 9 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑝 ⊆ (𝑞 𝑟)))
47 simprl 793 . . . . . . . . . . 11 ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑞𝐴)
4847a1i 11 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑞𝐴))
49 simpl 473 . . . . . . . . . . . . 13 ((𝑟𝐵𝑟𝐶) → 𝑟𝐵)
501, 49sylbir 225 . . . . . . . . . . . 12 (𝑟 ⊆ (𝐵𝐶) → 𝑟𝐵)
5150ad2antrl 763 . . . . . . . . . . 11 ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑟𝐵)
5251adantl 482 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → 𝑟𝐵)
5348, 52jctird 566 . . . . . . . . 9 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → (𝑞𝐴𝑟𝐵)))
5446, 53jcad 555 . . . . . . . 8 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))))
5554expd 452 . . . . . . 7 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5655adantlr 750 . . . . . 6 (((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5756adantlr 750 . . . . 5 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5857adantlr 750 . . . 4 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5958reximdvai 3014 . . 3 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))))
6018, 59mpd 15 . 2 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
61 mdsymlem1.2 . . . . . . 7 𝐵C
62 chjcl 28056 . . . . . . . . 9 ((𝐴C𝑝C ) → (𝐴 𝑝) ∈ C )
637, 62mpan 705 . . . . . . . 8 (𝑝C → (𝐴 𝑝) ∈ C )
642, 63syl5eqel 2708 . . . . . . 7 (𝑝C𝐶C )
65 chincl 28198 . . . . . . 7 ((𝐵C𝐶C ) → (𝐵𝐶) ∈ C )
6661, 64, 65sylancr 694 . . . . . 6 (𝑝C → (𝐵𝐶) ∈ C )
6726, 66syl 17 . . . . 5 (𝑝 ∈ HAtoms → (𝐵𝐶) ∈ C )
68 chrelat2 29069 . . . . 5 (((𝐵𝐶) ∈ C𝐴C ) → (¬ (𝐵𝐶) ⊆ 𝐴 ↔ ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)))
6967, 7, 68sylancl 693 . . . 4 (𝑝 ∈ HAtoms → (¬ (𝐵𝐶) ⊆ 𝐴 ↔ ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)))
7069biimpa 501 . . 3 ((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) → ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))
7170ad2antrr 761 . 2 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))
7260, 71reximddv 3017 1 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wrex 2913  cin 3559  wss 3560  (class class class)co 6605   C cch 27626   chj 27630  0c0h 27632  HAtomscat 27662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cc 9202  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961  ax-hilex 27696  ax-hfvadd 27697  ax-hvcom 27698  ax-hvass 27699  ax-hv0cl 27700  ax-hvaddid 27701  ax-hfvmul 27702  ax-hvmulid 27703  ax-hvmulass 27704  ax-hvdistr1 27705  ax-hvdistr2 27706  ax-hvmul0 27707  ax-hfi 27776  ax-his1 27779  ax-his2 27780  ax-his3 27781  ax-his4 27782  ax-hcompl 27899
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-omul 7511  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-acn 8713  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-rlim 14149  df-sum 14346  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-cn 20936  df-cnp 20937  df-lm 20938  df-haus 21024  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cfil 22956  df-cau 22957  df-cmet 22958  df-grpo 27187  df-gid 27188  df-ginv 27189  df-gdiv 27190  df-ablo 27239  df-vc 27254  df-nv 27287  df-va 27290  df-ba 27291  df-sm 27292  df-0v 27293  df-vs 27294  df-nmcv 27295  df-ims 27296  df-dip 27396  df-ssp 27417  df-ph 27508  df-cbn 27559  df-hnorm 27665  df-hba 27666  df-hvsub 27668  df-hlim 27669  df-hcau 27670  df-sh 27904  df-ch 27918  df-oc 27949  df-ch0 27950  df-shs 28007  df-span 28008  df-chj 28009  df-chsup 28010  df-pjh 28094  df-cv 28978  df-at 29037
This theorem is referenced by:  mdsymlem4  29105
  Copyright terms: Public domain W3C validator