HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem5 Structured version   Visualization version   GIF version

Theorem mdsymlem5 30186
Description: Lemma for mdsymi 30190. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem5 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
Distinct variable groups:   𝑟,𝑞,𝐶   𝑝,𝑐,𝑞,𝑟,𝐴   𝐵,𝑐,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐶(𝑝,𝑐)

Proof of Theorem mdsymlem5
StepHypRef Expression
1 df-ne 3019 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝑝 ↔ ¬ 𝑞 = 𝑝)
2 atnemeq0 30156 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑞𝑝 ↔ (𝑞𝑝) = 0))
31, 2syl5bbr 287 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (¬ 𝑞 = 𝑝 ↔ (𝑞𝑝) = 0))
43anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0)))
543adant3 1128 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) ↔ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0)))
6 atelch 30123 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ HAtoms → 𝑞C )
7 atexch 30160 . . . . . . . . . . . . . . . . . . . 20 ((𝑞C𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0) → 𝑟 ⊆ (𝑞 𝑝)))
86, 7syl3an1 1159 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝑝) = 0) → 𝑟 ⊆ (𝑞 𝑝)))
95, 8sylbid 242 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ ¬ 𝑞 = 𝑝) → 𝑟 ⊆ (𝑞 𝑝)))
109expd 418 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
11103com23 1122 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
12113expa 1114 . . . . . . . . . . . . . . 15 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1312adantrl 714 . . . . . . . . . . . . . 14 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 𝑟) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1413adantrd 494 . . . . . . . . . . . . 13 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝𝑟 ⊆ (𝑞 𝑝))))
1514imp32 421 . . . . . . . . . . . 12 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → 𝑟 ⊆ (𝑞 𝑝))
1615adantrl 714 . . . . . . . . . . 11 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝))) → 𝑟 ⊆ (𝑞 𝑝))
1716adantrr 715 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟 ⊆ (𝑞 𝑝))
18 simplrl 775 . . . . . . . . . . . 12 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑞𝐴)
19 atelch 30123 . . . . . . . . . . . . . . . 16 (𝑝 ∈ HAtoms → 𝑝C )
2019anim1i 616 . . . . . . . . . . . . . . 15 ((𝑝 ∈ HAtoms ∧ 𝑐C ) → (𝑝C𝑐C ))
2120ancoms 461 . . . . . . . . . . . . . 14 ((𝑐C𝑝 ∈ HAtoms) → (𝑝C𝑐C ))
22 mdsymlem1.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴C
23 chub2 29287 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴C𝑐C ) → 𝐴 ⊆ (𝑐 𝐴))
2422, 23mpan 688 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C𝐴 ⊆ (𝑐 𝐴))
25 sstr 3977 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑞𝐴𝐴 ⊆ (𝑐 𝐴)) → 𝑞 ⊆ (𝑐 𝐴))
2624, 25sylan2 594 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞𝐴𝑐C ) → 𝑞 ⊆ (𝑐 𝐴))
27 chub1 29286 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑐C𝐴C ) → 𝑐 ⊆ (𝑐 𝐴))
2822, 27mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C𝑐 ⊆ (𝑐 𝐴))
29 sstr 3977 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝𝑐𝑐 ⊆ (𝑐 𝐴)) → 𝑝 ⊆ (𝑐 𝐴))
3028, 29sylan2 594 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝𝑐𝑐C ) → 𝑝 ⊆ (𝑐 𝐴))
3126, 30anim12i 614 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑞𝐴𝑐C ) ∧ (𝑝𝑐𝑐C )) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3231anandirs 677 . . . . . . . . . . . . . . . . . . . . 21 (((𝑞𝐴𝑝𝑐) ∧ 𝑐C ) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3332ancoms 461 . . . . . . . . . . . . . . . . . . . 20 ((𝑐C ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
3433adantll 712 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)))
35 chjcl 29136 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐C𝐴C ) → (𝑐 𝐴) ∈ C )
3622, 35mpan2 689 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐C → (𝑐 𝐴) ∈ C )
37 chlub 29288 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞C𝑝C ∧ (𝑐 𝐴) ∈ C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
3836, 37syl3an3 1161 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞C𝑝C𝑐C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
39383expa 1114 . . . . . . . . . . . . . . . . . . . 20 (((𝑞C𝑝C ) ∧ 𝑐C ) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
4039adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → ((𝑞 ⊆ (𝑐 𝐴) ∧ 𝑝 ⊆ (𝑐 𝐴)) ↔ (𝑞 𝑝) ⊆ (𝑐 𝐴)))
4134, 40mpbid 234 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝑞𝐴𝑝𝑐)) → (𝑞 𝑝) ⊆ (𝑐 𝐴))
4241adantrl 714 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑞 𝑝) ⊆ (𝑐 𝐴))
43 chlejb2 29292 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑐C ) → (𝐴𝑐 ↔ (𝑐 𝐴) = 𝑐))
4422, 43mpan 688 . . . . . . . . . . . . . . . . . . 19 (𝑐C → (𝐴𝑐 ↔ (𝑐 𝐴) = 𝑐))
4544biimpa 479 . . . . . . . . . . . . . . . . . 18 ((𝑐C𝐴𝑐) → (𝑐 𝐴) = 𝑐)
4645ad2ant2lr 746 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑐 𝐴) = 𝑐)
4742, 46sseqtrd 4009 . . . . . . . . . . . . . . . 16 ((((𝑞C𝑝C ) ∧ 𝑐C ) ∧ (𝐴𝑐 ∧ (𝑞𝐴𝑝𝑐))) → (𝑞 𝑝) ⊆ 𝑐)
4847exp45 441 . . . . . . . . . . . . . . 15 (((𝑞C𝑝C ) ∧ 𝑐C ) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
4948anasss 469 . . . . . . . . . . . . . 14 ((𝑞C ∧ (𝑝C𝑐C )) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
506, 21, 49syl2an 597 . . . . . . . . . . . . 13 ((𝑞 ∈ HAtoms ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5150adantlr 713 . . . . . . . . . . . 12 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (𝑞𝐴 → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5218, 51syl7 74 . . . . . . . . . . 11 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → (𝑝𝑐 → (𝑞 𝑝) ⊆ 𝑐))))
5352imp44 431 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → (𝑞 𝑝) ⊆ 𝑐)
5417, 53sstrd 3979 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟𝑐)
55 simplrr 776 . . . . . . . . . . 11 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝) → 𝑟𝐵)
5655ad2antlr 725 . . . . . . . . . 10 (((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐) → 𝑟𝐵)
5756adantl 484 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟𝐵)
5854, 57ssind 4211 . . . . . . . 8 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑟 ⊆ (𝑐𝐵))
59 atelch 30123 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ HAtoms → 𝑟C )
606, 59anim12i 614 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞C𝑟C ))
61 mdsymlem1.2 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐵C
62 chincl 29278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑐C𝐵C ) → (𝑐𝐵) ∈ C )
6361, 62mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐C → (𝑐𝐵) ∈ C )
64 chlej1 29289 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑟C ∧ (𝑐𝐵) ∈ C𝑞C ) ∧ 𝑟 ⊆ (𝑐𝐵)) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞))
6564ex 415 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟C ∧ (𝑐𝐵) ∈ C𝑞C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
6663, 65syl3an2 1160 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟C𝑐C𝑞C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
67663comr 1121 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞C𝑟C𝑐C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
68673expa 1114 . . . . . . . . . . . . . . . . . . . . 21 (((𝑞C𝑟C ) ∧ 𝑐C ) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
6968adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞)))
70 chlej2 29290 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑞C𝐴C ∧ (𝑐𝐵) ∈ C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7122, 70mp3anl2 1452 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑞C ∧ (𝑐𝐵) ∈ C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7263, 71sylanl2 679 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑞C𝑐C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
7372adantllr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴))
74 sstr2 3976 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (((𝑐𝐵) ∨ 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
7573, 74syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
76 chjcom 29285 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞C𝑟C ) → (𝑞 𝑟) = (𝑟 𝑞))
7776ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑞 𝑟) = (𝑟 𝑞))
7877sseq1d 4000 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ (𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝐴)))
7975, 78sylibrd 261 . . . . . . . . . . . . . . . . . . . 20 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → ((𝑟 𝑞) ⊆ ((𝑐𝐵) ∨ 𝑞) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
8069, 79syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
8180adantrl 714 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → (𝑟 ⊆ (𝑐𝐵) → (𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴)))
82 sstr2 3976 . . . . . . . . . . . . . . . . . . 19 (𝑝 ⊆ (𝑞 𝑟) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8382ad2antrl 726 . . . . . . . . . . . . . . . . . 18 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → ((𝑞 𝑟) ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8481, 83syld 47 . . . . . . . . . . . . . . . . 17 ((((𝑞C𝑟C ) ∧ 𝑐C ) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ 𝑞𝐴)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8584exp32 423 . . . . . . . . . . . . . . . 16 (((𝑞C𝑟C ) ∧ 𝑐C ) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8660, 85sylan 582 . . . . . . . . . . . . . . 15 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑐C ) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8786adantrr 715 . . . . . . . . . . . . . 14 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝑝 ⊆ (𝑞 𝑟) → (𝑞𝐴 → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
8887imp31 420 . . . . . . . . . . . . 13 (((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 𝑟)) ∧ 𝑞𝐴) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
8988adantrr 715 . . . . . . . . . . . 12 (((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ 𝑝 ⊆ (𝑞 𝑟)) ∧ (𝑞𝐴𝑟𝐵)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9089anasss 469 . . . . . . . . . . 11 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9190adantrr 715 . . . . . . . . . 10 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9291adantrl 714 . . . . . . . . 9 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ (𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝))) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9392adantrr 715 . . . . . . . 8 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → (𝑟 ⊆ (𝑐𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
9458, 93mpd 15 . . . . . . 7 ((((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) ∧ ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) ∧ 𝑝𝑐)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))
9594exp32 423 . . . . . 6 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → ((𝐴𝑐 ∧ ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ¬ 𝑞 = 𝑝)) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
9695exp4d 436 . . . . 5 (((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑐C𝑝 ∈ HAtoms)) → (𝐴𝑐 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
9796exp32 423 . . . 4 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐C → (𝑝 ∈ HAtoms → (𝐴𝑐 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))))
9897com34 91 . . 3 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑐C → (𝐴𝑐 → (𝑝 ∈ HAtoms → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))))
9998imp4c 426 . 2 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (¬ 𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
10099com24 95 1 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  cin 3937  wss 3938  (class class class)co 7158   C cch 28708   chj 28712  0c0h 28714  HAtomscat 28744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864  ax-hcompl 28981
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-cn 21837  df-cnp 21838  df-lm 21839  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cfil 23860  df-cau 23861  df-cmet 23862  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-dip 28480  df-ssp 28501  df-ph 28592  df-cbn 28642  df-hnorm 28747  df-hba 28748  df-hvsub 28750  df-hlim 28751  df-hcau 28752  df-sh 28986  df-ch 29000  df-oc 29031  df-ch0 29032  df-shs 29087  df-span 29088  df-chj 29089  df-chsup 29090  df-pjh 29174  df-cv 30058  df-at 30117
This theorem is referenced by:  mdsymlem6  30187
  Copyright terms: Public domain W3C validator