Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdvval Structured version   Visualization version   GIF version

Theorem mdvval 31700
Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of dv conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mdvval.v 𝑉 = (mVR‘𝑇)
mdvval.d 𝐷 = (mDV‘𝑇)
Assertion
Ref Expression
mdvval 𝐷 = ((𝑉 × 𝑉) ∖ I )

Proof of Theorem mdvval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mdvval.d . 2 𝐷 = (mDV‘𝑇)
2 fveq2 6344 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
3 mdvval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
42, 3syl6eqr 2804 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
54sqxpeqd 5290 . . . . 5 (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉))
65difeq1d 3862 . . . 4 (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I ))
7 df-mdv 31684 . . . 4 mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ))
8 fvex 6354 . . . . . 6 (mVR‘𝑡) ∈ V
98, 8xpex 7119 . . . . 5 ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V
10 difexg 4952 . . . . 5 (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V)
119, 10ax-mp 5 . . . 4 (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V
126, 7, 11fvmpt3i 6441 . . 3 (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ))
13 0dif 4112 . . . . 5 (∅ ∖ I ) = ∅
1413eqcomi 2761 . . . 4 ∅ = (∅ ∖ I )
15 fvprc 6338 . . . 4 𝑇 ∈ V → (mDV‘𝑇) = ∅)
16 fvprc 6338 . . . . . . . 8 𝑇 ∈ V → (mVR‘𝑇) = ∅)
173, 16syl5eq 2798 . . . . . . 7 𝑇 ∈ V → 𝑉 = ∅)
1817xpeq2d 5288 . . . . . 6 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅))
19 xp0 5702 . . . . . 6 (𝑉 × ∅) = ∅
2018, 19syl6eq 2802 . . . . 5 𝑇 ∈ V → (𝑉 × 𝑉) = ∅)
2120difeq1d 3862 . . . 4 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I ))
2214, 15, 213eqtr4a 2812 . . 3 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ))
2312, 22pm2.61i 176 . 2 (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )
241, 23eqtri 2774 1 𝐷 = ((𝑉 × 𝑉) ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1624  wcel 2131  Vcvv 3332  cdif 3704  c0 4050   I cid 5165   × cxp 5256  cfv 6041  mVRcmvar 31657  mDVcmdv 31664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-iota 6004  df-fun 6043  df-fv 6049  df-mdv 31684
This theorem is referenced by:  mthmpps  31778  mclsppslem  31779
  Copyright terms: Public domain W3C validator