Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiininc Structured version   Visualization version   GIF version

Theorem meaiininc 39201
Description: Measures are continuous from above: if 𝐸 is a non-increasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiininc.f 𝑛𝜑
meaiininc.m (𝜑𝑀 ∈ Meas)
meaiininc.n (𝜑𝑁 ∈ ℤ)
meaiininc.z 𝑍 = (ℤ𝑁)
meaiininc.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiininc.i ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
meaiininc.k (𝜑𝐾 ∈ (ℤ𝑁))
meaiininc.r (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
meaiininc.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiininc (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐾   𝑛,𝑀   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑁(𝑛)

Proof of Theorem meaiininc
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiininc.m . . 3 (𝜑𝑀 ∈ Meas)
2 meaiininc.n . . 3 (𝜑𝑁 ∈ ℤ)
3 meaiininc.z . . 3 𝑍 = (ℤ𝑁)
4 meaiininc.e . . 3 (𝜑𝐸:𝑍⟶dom 𝑀)
5 meaiininc.f . . . . . 6 𝑛𝜑
6 nfv 1829 . . . . . 6 𝑛 𝑖𝑍
75, 6nfan 1815 . . . . 5 𝑛(𝜑𝑖𝑍)
8 nfv 1829 . . . . 5 𝑛(𝐸‘(𝑖 + 1)) ⊆ (𝐸𝑖)
97, 8nfim 1812 . . . 4 𝑛((𝜑𝑖𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸𝑖))
10 eleq1 2675 . . . . . 6 (𝑛 = 𝑖 → (𝑛𝑍𝑖𝑍))
1110anbi2d 735 . . . . 5 (𝑛 = 𝑖 → ((𝜑𝑛𝑍) ↔ (𝜑𝑖𝑍)))
12 oveq1 6534 . . . . . . 7 (𝑛 = 𝑖 → (𝑛 + 1) = (𝑖 + 1))
1312fveq2d 6092 . . . . . 6 (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1)))
14 fveq2 6088 . . . . . 6 (𝑛 = 𝑖 → (𝐸𝑛) = (𝐸𝑖))
1513, 14sseq12d 3596 . . . . 5 (𝑛 = 𝑖 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛) ↔ (𝐸‘(𝑖 + 1)) ⊆ (𝐸𝑖)))
1611, 15imbi12d 332 . . . 4 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛)) ↔ ((𝜑𝑖𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸𝑖))))
17 meaiininc.i . . . 4 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
189, 16, 17chvar 2249 . . 3 ((𝜑𝑖𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸𝑖))
19 meaiininc.k . . 3 (𝜑𝐾 ∈ (ℤ𝑁))
20 meaiininc.r . . 3 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
21 fveq2 6088 . . . . 5 (𝑚 = 𝑖 → (𝐸𝑚) = (𝐸𝑖))
2221fveq2d 6092 . . . 4 (𝑚 = 𝑖 → (𝑀‘(𝐸𝑚)) = (𝑀‘(𝐸𝑖)))
2322cbvmptv 4672 . . 3 (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚))) = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
2414difeq2d 3689 . . . 4 (𝑛 = 𝑖 → ((𝐸𝐾) ∖ (𝐸𝑛)) = ((𝐸𝐾) ∖ (𝐸𝑖)))
2524cbvmptv 4672 . . 3 (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))) = (𝑖𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑖)))
26 fveq2 6088 . . . 4 (𝑚 = 𝑖 → ((𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))‘𝑚) = ((𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))‘𝑖))
2726cbviunv 4489 . . 3 𝑚𝑍 ((𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))‘𝑚) = 𝑖𝑍 ((𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))‘𝑖)
281, 2, 3, 4, 18, 19, 20, 23, 25, 27meaiininclem 39200 . 2 (𝜑 → (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚))) ⇝ (𝑀 𝑖𝑍 (𝐸𝑖)))
29 meaiininc.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
30 fveq2 6088 . . . . . . 7 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
3130fveq2d 6092 . . . . . 6 (𝑛 = 𝑚 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑚)))
3231cbvmptv 4672 . . . . 5 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
3329, 32eqtri 2631 . . . 4 𝑆 = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
3433a1i 11 . . 3 (𝜑𝑆 = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚))))
3514cbviinv 4490 . . . . 5 𝑛𝑍 (𝐸𝑛) = 𝑖𝑍 (𝐸𝑖)
3635fveq2i 6091 . . . 4 (𝑀 𝑛𝑍 (𝐸𝑛)) = (𝑀 𝑖𝑍 (𝐸𝑖))
3736a1i 11 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = (𝑀 𝑖𝑍 (𝐸𝑖)))
3834, 37breq12d 4590 . 2 (𝜑 → (𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)) ↔ (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚))) ⇝ (𝑀 𝑖𝑍 (𝐸𝑖))))
3928, 38mpbird 245 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wnf 1698  wcel 1976  cdif 3536  wss 3539   ciun 4449   ciin 4450   class class class wbr 4577  cmpt 4637  dom cdm 5028  wf 5786  cfv 5790  (class class class)co 6527  cr 9792  1c1 9794   + caddc 9796  cz 11213  cuz 11522  cli 14012  Meascmea 39166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-omul 7430  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-oi 8276  df-card 8626  df-acn 8629  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-xadd 11782  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-sum 14214  df-salg 39029  df-sumge0 39080  df-mea 39167
This theorem is referenced by:  meaiininc2  39202  vonicclem2  39399
  Copyright terms: Public domain W3C validator