Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiunincf Structured version   Visualization version   GIF version

Theorem meaiunincf 41199
 Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of non-decreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
meaiunincf.p 𝑛𝜑
meaiunincf.f 𝑛𝐸
meaiunincf.m (𝜑𝑀 ∈ Meas)
meaiunincf.n (𝜑𝑁 ∈ ℤ)
meaiunincf.z 𝑍 = (ℤ𝑁)
meaiunincf.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiunincf.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiunincf.x (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
meaiunincf.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiunincf (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑥,𝐸   𝑛,𝑀,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑛)   𝐸(𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem meaiunincf
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiunincf.m . . 3 (𝜑𝑀 ∈ Meas)
2 meaiunincf.n . . 3 (𝜑𝑁 ∈ ℤ)
3 meaiunincf.z . . 3 𝑍 = (ℤ𝑁)
4 meaiunincf.e . . 3 (𝜑𝐸:𝑍⟶dom 𝑀)
5 meaiunincf.p . . . . . 6 𝑛𝜑
6 nfv 1988 . . . . . 6 𝑛 𝑘𝑍
75, 6nfan 1973 . . . . 5 𝑛(𝜑𝑘𝑍)
8 meaiunincf.f . . . . . . 7 𝑛𝐸
9 nfcv 2898 . . . . . . 7 𝑛𝑘
108, 9nffv 6355 . . . . . 6 𝑛(𝐸𝑘)
11 nfcv 2898 . . . . . . 7 𝑛(𝑘 + 1)
128, 11nffv 6355 . . . . . 6 𝑛(𝐸‘(𝑘 + 1))
1310, 12nfss 3733 . . . . 5 𝑛(𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))
147, 13nfim 1970 . . . 4 𝑛((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
15 eleq1w 2818 . . . . . 6 (𝑛 = 𝑘 → (𝑛𝑍𝑘𝑍))
1615anbi2d 742 . . . . 5 (𝑛 = 𝑘 → ((𝜑𝑛𝑍) ↔ (𝜑𝑘𝑍)))
17 fveq2 6348 . . . . . 6 (𝑛 = 𝑘 → (𝐸𝑛) = (𝐸𝑘))
18 oveq1 6816 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
1918fveq2d 6352 . . . . . 6 (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1)))
2017, 19sseq12d 3771 . . . . 5 (𝑛 = 𝑘 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))))
2116, 20imbi12d 333 . . . 4 (𝑛 = 𝑘 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))))
22 meaiunincf.i . . . 4 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
2314, 21, 22chvar 2403 . . 3 ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
24 meaiunincf.x . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
25 nfv 1988 . . . . 5 𝑦𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
26 nfv 1988 . . . . 5 𝑥𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦
27 breq2 4804 . . . . . . 7 (𝑥 = 𝑦 → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸𝑛)) ≤ 𝑦))
2827ralbidv 3120 . . . . . 6 (𝑥 = 𝑦 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑦))
29 nfv 1988 . . . . . . . 8 𝑘(𝑀‘(𝐸𝑛)) ≤ 𝑦
30 nfcv 2898 . . . . . . . . . 10 𝑛𝑀
3130, 10nffv 6355 . . . . . . . . 9 𝑛(𝑀‘(𝐸𝑘))
32 nfcv 2898 . . . . . . . . 9 𝑛
33 nfcv 2898 . . . . . . . . 9 𝑛𝑦
3431, 32, 33nfbr 4847 . . . . . . . 8 𝑛(𝑀‘(𝐸𝑘)) ≤ 𝑦
3517fveq2d 6352 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑘)))
3635breq1d 4810 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑀‘(𝐸𝑛)) ≤ 𝑦 ↔ (𝑀‘(𝐸𝑘)) ≤ 𝑦))
3729, 34, 36cbvral 3302 . . . . . . 7 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑦 ↔ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦)
3837a1i 11 . . . . . 6 (𝑥 = 𝑦 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑦 ↔ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦))
3928, 38bitrd 268 . . . . 5 (𝑥 = 𝑦 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦))
4025, 26, 39cbvrex 3303 . . . 4 (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∃𝑦 ∈ ℝ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦)
4124, 40sylib 208 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦)
42 meaiunincf.s . . . 4 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
43 nfcv 2898 . . . . 5 𝑘(𝑀‘(𝐸𝑛))
4443, 31, 35cbvmpt 4897 . . . 4 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑘𝑍 ↦ (𝑀‘(𝐸𝑘)))
4542, 44eqtri 2778 . . 3 𝑆 = (𝑘𝑍 ↦ (𝑀‘(𝐸𝑘)))
461, 2, 3, 4, 23, 41, 45meaiuninc 41197 . 2 (𝜑𝑆 ⇝ (𝑀 𝑘𝑍 (𝐸𝑘)))
47 nfcv 2898 . . . 4 𝑘(𝐸𝑛)
48 fveq2 6348 . . . 4 (𝑘 = 𝑛 → (𝐸𝑘) = (𝐸𝑛))
4910, 47, 48cbviun 4705 . . 3 𝑘𝑍 (𝐸𝑘) = 𝑛𝑍 (𝐸𝑛)
5049fveq2i 6351 . 2 (𝑀 𝑘𝑍 (𝐸𝑘)) = (𝑀 𝑛𝑍 (𝐸𝑛))
5146, 50syl6breq 4841 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1628  Ⅎwnf 1853   ∈ wcel 2135  Ⅎwnfc 2885  ∀wral 3046  ∃wrex 3047   ⊆ wss 3711  ∪ ciun 4668   class class class wbr 4800   ↦ cmpt 4877  dom cdm 5262  ⟶wf 6041  ‘cfv 6045  (class class class)co 6809  ℝcr 10123  1c1 10125   + caddc 10127   ≤ cle 10263  ℤcz 11565  ℤ≥cuz 11875   ⇝ cli 14410  Meascmea 41165 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-disj 4769  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-omul 7730  df-er 7907  df-map 8021  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-oi 8576  df-card 8951  df-acn 8954  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-xadd 12136  df-ico 12370  df-icc 12371  df-fz 12516  df-fzo 12656  df-seq 12992  df-exp 13051  df-hash 13308  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-clim 14414  df-sum 14612  df-salg 41028  df-sumge0 41079  df-mea 41166 This theorem is referenced by:  meaiuninc3v  41200
 Copyright terms: Public domain W3C validator