![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measxun2 | Structured version Visualization version GIF version |
Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
Ref | Expression |
---|---|
measxun2 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝑀 ∈ (measures‘𝑆)) | |
2 | simp2r 1243 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑆) | |
3 | measbase 30569 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝑆 ∈ ∪ ran sigAlgebra) |
5 | simp2l 1242 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ 𝑆) | |
6 | difelsiga 30505 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) | |
7 | 4, 5, 2, 6 | syl3anc 1477 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
8 | prelpwi 5064 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆) | |
9 | 2, 7, 8 | syl2anc 696 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆) |
10 | prct 29801 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → {𝐵, (𝐴 ∖ 𝐵)} ≼ ω) | |
11 | 2, 7, 10 | syl2anc 696 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → {𝐵, (𝐴 ∖ 𝐵)} ≼ ω) |
12 | simp3 1133 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
13 | disjdifprg2 29696 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) | |
14 | prcom 4411 | . . . . . . . . 9 ⊢ {(𝐴 ∖ 𝐵), 𝐵} = {𝐵, (𝐴 ∖ 𝐵)} | |
15 | dfss 3730 | . . . . . . . . . . . 12 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐵 ∩ 𝐴)) | |
16 | 15 | biimpi 206 | . . . . . . . . . . 11 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
17 | incom 3948 | . . . . . . . . . . 11 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
18 | 16, 17 | syl6eq 2810 | . . . . . . . . . 10 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐴 ∩ 𝐵)) |
19 | 18 | preq2d 4419 | . . . . . . . . 9 ⊢ (𝐵 ⊆ 𝐴 → {(𝐴 ∖ 𝐵), 𝐵} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
20 | 14, 19 | syl5eqr 2808 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → {𝐵, (𝐴 ∖ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
21 | 20 | disjeq1d 4780 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥 ↔ Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥)) |
22 | 21 | biimprd 238 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥 → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) |
23 | 13, 22 | mpan9 487 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ⊆ 𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥) |
24 | 5, 12, 23 | syl2anc 696 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥) |
25 | 11, 24 | jca 555 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → ({𝐵, (𝐴 ∖ 𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) |
26 | measvun 30581 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆 ∧ ({𝐵, (𝐴 ∖ 𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥)) | |
27 | 1, 9, 25, 26 | syl3anc 1477 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥)) |
28 | 2, 7 | jca 555 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆)) |
29 | uniprg 4602 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → ∪ {𝐵, (𝐴 ∖ 𝐵)} = (𝐵 ∪ (𝐴 ∖ 𝐵))) | |
30 | undif 4193 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
31 | 30 | biimpi 206 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
32 | 29, 31 | sylan9eq 2814 | . . . 4 ⊢ (((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → ∪ {𝐵, (𝐴 ∖ 𝐵)} = 𝐴) |
33 | 32 | fveq2d 6356 | . . 3 ⊢ (((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = (𝑀‘𝐴)) |
34 | 28, 12, 33 | syl2anc 696 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = (𝑀‘𝐴)) |
35 | simpr 479 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
36 | 35 | fveq2d 6356 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = 𝐵) → (𝑀‘𝑥) = (𝑀‘𝐵)) |
37 | simpr 479 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐴 ∖ 𝐵)) → 𝑥 = (𝐴 ∖ 𝐵)) | |
38 | 37 | fveq2d 6356 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐴 ∖ 𝐵)) → (𝑀‘𝑥) = (𝑀‘(𝐴 ∖ 𝐵))) |
39 | measvxrge0 30577 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
40 | 1, 2, 39 | syl2anc 696 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
41 | measvxrge0 30577 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) | |
42 | 1, 7, 41 | syl2anc 696 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) |
43 | eqimss 3798 | . . . . . . . . 9 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → 𝐵 ⊆ (𝐴 ∖ 𝐵)) | |
44 | ssdifeq0 4195 | . . . . . . . . 9 ⊢ (𝐵 ⊆ (𝐴 ∖ 𝐵) ↔ 𝐵 = ∅) | |
45 | 43, 44 | sylib 208 | . . . . . . . 8 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → 𝐵 = ∅) |
46 | 45 | fveq2d 6356 | . . . . . . 7 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → (𝑀‘𝐵) = (𝑀‘∅)) |
47 | measvnul 30578 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
48 | 46, 47 | sylan9eqr 2816 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → (𝑀‘𝐵) = 0) |
49 | 1, 48 | sylan 489 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → (𝑀‘𝐵) = 0) |
50 | 49 | orcd 406 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → ((𝑀‘𝐵) = 0 ∨ (𝑀‘𝐵) = +∞)) |
51 | 50 | ex 449 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐵 = (𝐴 ∖ 𝐵) → ((𝑀‘𝐵) = 0 ∨ (𝑀‘𝐵) = +∞))) |
52 | 36, 38, 2, 7, 40, 42, 51 | esumpr2 30438 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
53 | 27, 34, 52 | 3eqtr3d 2802 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∖ cdif 3712 ∪ cun 3713 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 {cpr 4323 ∪ cuni 4588 Disj wdisj 4772 class class class wbr 4804 ran crn 5267 ‘cfv 6049 (class class class)co 6813 ωcom 7230 ≼ cdom 8119 0cc0 10128 +∞cpnf 10263 +𝑒 cxad 12137 [,]cicc 12371 Σ*cesum 30398 sigAlgebracsiga 30479 measurescmeas 30567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-ac2 9477 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-disj 4773 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-acn 8958 df-ac 9129 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-ioc 12373 df-ico 12374 df-icc 12375 df-fz 12520 df-fzo 12660 df-fl 12787 df-mod 12863 df-seq 12996 df-exp 13055 df-fac 13255 df-bc 13284 df-hash 13312 df-shft 14006 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-limsup 14401 df-clim 14418 df-rlim 14419 df-sum 14616 df-ef 14997 df-sin 14999 df-cos 15000 df-pi 15002 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-ordt 16363 df-xrs 16364 df-qtop 16369 df-imas 16370 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-ps 17401 df-tsr 17402 df-plusf 17442 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-submnd 17537 df-grp 17626 df-minusg 17627 df-sbg 17628 df-mulg 17742 df-subg 17792 df-cntz 17950 df-cmn 18395 df-abl 18396 df-mgp 18690 df-ur 18702 df-ring 18749 df-cring 18750 df-subrg 18980 df-abv 19019 df-lmod 19067 df-scaf 19068 df-sra 19374 df-rgmod 19375 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-fbas 19945 df-fg 19946 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cld 21025 df-ntr 21026 df-cls 21027 df-nei 21104 df-lp 21142 df-perf 21143 df-cn 21233 df-cnp 21234 df-haus 21321 df-tx 21567 df-hmeo 21760 df-fil 21851 df-fm 21943 df-flim 21944 df-flf 21945 df-tmd 22077 df-tgp 22078 df-tsms 22131 df-trg 22164 df-xms 22326 df-ms 22327 df-tms 22328 df-nm 22588 df-ngp 22589 df-nrg 22591 df-nlm 22592 df-ii 22881 df-cncf 22882 df-limc 23829 df-dv 23830 df-log 24502 df-esum 30399 df-siga 30480 df-meas 30568 |
This theorem is referenced by: measun 30583 |
Copyright terms: Public domain | W3C validator |