Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaxrcl Structured version   Visualization version   GIF version

Theorem meaxrcl 39982
Description: The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaxrcl.1 (𝜑𝑀 ∈ Meas)
meaxrcl.2 𝑆 = dom 𝑀
meaxrcl.3 (𝜑𝐴𝑆)
Assertion
Ref Expression
meaxrcl (𝜑 → (𝑀𝐴) ∈ ℝ*)

Proof of Theorem meaxrcl
StepHypRef Expression
1 iccssxr 12198 . 2 (0[,]+∞) ⊆ ℝ*
2 meaxrcl.1 . . 3 (𝜑𝑀 ∈ Meas)
3 meaxrcl.2 . . 3 𝑆 = dom 𝑀
4 meaxrcl.3 . . 3 (𝜑𝐴𝑆)
52, 3, 4meacl 39979 . 2 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
61, 5sseldi 3581 1 (𝜑 → (𝑀𝐴) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  dom cdm 5074  cfv 5847  (class class class)co 6604  0cc0 9880  +∞cpnf 10015  *cxr 10017  [,]cicc 12120  Meascmea 39970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-xr 10022  df-icc 12124  df-mea 39971
This theorem is referenced by:  meassle  39984  meaunle  39985  meassre  39998  meale0eq0  39999  meaiuninclem  40001
  Copyright terms: Public domain W3C validator