![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetdef | Structured version Visualization version GIF version |
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
meetdef.u | ⊢ 𝐺 = (glb‘𝐾) |
meetdef.m | ⊢ ∧ = (meet‘𝐾) |
meetdef.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetdef.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
meetdef.y | ⊢ (𝜑 → 𝑌 ∈ 𝑍) |
Ref | Expression |
---|---|
meetdef | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meetdef.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
2 | meetdef.u | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
3 | meetdef.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
4 | 2, 3 | meetdm 17064 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
5 | 4 | eleq2d 2716 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
7 | meetdef.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
8 | meetdef.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑍) | |
9 | preq1 4300 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦}) | |
10 | 9 | eleq1d 2715 | . . . 4 ⊢ (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑦} ∈ dom 𝐺)) |
11 | preq2 4301 | . . . . 5 ⊢ (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌}) | |
12 | 11 | eleq1d 2715 | . . . 4 ⊢ (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
13 | 10, 12 | opelopabg 5022 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
14 | 7, 8, 13 | syl2anc 694 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
15 | 6, 14 | bitrd 268 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 {cpr 4212 〈cop 4216 {copab 4745 dom cdm 5143 ‘cfv 5926 glbcglb 16990 meetcmee 16992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-oprab 6694 df-glb 17022 df-meet 17024 |
This theorem is referenced by: meetval 17066 meetcl 17067 meetdmss 17068 meeteu 17071 clatl 17163 |
Copyright terms: Public domain | W3C validator |