MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdmss Structured version   Visualization version   GIF version

Theorem meetdmss 16945
Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetdmss.b 𝐵 = (Base‘𝐾)
meetdmss.j = (meet‘𝐾)
meetdmss.k (𝜑𝐾𝑉)
Assertion
Ref Expression
meetdmss (𝜑 → dom ⊆ (𝐵 × 𝐵))

Proof of Theorem meetdmss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5209 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}
2 meetdmss.k . . . . 5 (𝜑𝐾𝑉)
3 eqid 2621 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
4 meetdmss.j . . . . . 6 = (meet‘𝐾)
53, 4meetdm 16941 . . . . 5 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)})
62, 5syl 17 . . . 4 (𝜑 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)})
76releqd 5166 . . 3 (𝜑 → (Rel dom ↔ Rel {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}))
81, 7mpbiri 248 . 2 (𝜑 → Rel dom )
9 vex 3189 . . . . 5 𝑥 ∈ V
109a1i 11 . . . 4 (𝜑𝑥 ∈ V)
11 vex 3189 . . . . 5 𝑦 ∈ V
1211a1i 11 . . . 4 (𝜑𝑦 ∈ V)
133, 4, 2, 10, 12meetdef 16942 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom ↔ {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
14 meetdmss.b . . . . . 6 𝐵 = (Base‘𝐾)
15 eqid 2621 . . . . . 6 (le‘𝐾) = (le‘𝐾)
162adantr 481 . . . . . 6 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → 𝐾𝑉)
17 simpr 477 . . . . . 6 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
1814, 15, 3, 16, 17glbelss 16919 . . . . 5 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵)
1918ex 450 . . . 4 (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵))
209, 11prss 4321 . . . . 5 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
21 opelxpi 5110 . . . . 5 ((𝑥𝐵𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
2220, 21sylbir 225 . . . 4 ({𝑥, 𝑦} ⊆ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
2319, 22syl6 35 . . 3 (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵)))
2413, 23sylbid 230 . 2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵)))
258, 24relssdv 5175 1 (𝜑 → dom ⊆ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  wss 3556  {cpr 4152  cop 4156  {copab 4674   × cxp 5074  dom cdm 5076  Rel wrel 5081  cfv 5849  Basecbs 15784  lecple 15872  glbcglb 16867  meetcmee 16869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-oprab 6611  df-glb 16899  df-meet 16901
This theorem is referenced by:  clatl  17040
  Copyright terms: Public domain W3C validator