Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendbas Structured version   Visualization version   GIF version

Theorem mendbas 37232
Description: Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypothesis
Ref Expression
mendbas.a 𝐴 = (MEndo‘𝑀)
Assertion
Ref Expression
mendbas (𝑀 LMHom 𝑀) = (Base‘𝐴)

Proof of Theorem mendbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6632 . . . 4 (𝑀 LMHom 𝑀) ∈ V
2 eqid 2621 . . . . 5 ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩}) = ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩})
32algbase 37226 . . . 4 ((𝑀 LMHom 𝑀) ∈ V → (𝑀 LMHom 𝑀) = (Base‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩})))
41, 3mp1i 13 . . 3 (𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩})))
5 mendbas.a . . . . 5 𝐴 = (MEndo‘𝑀)
6 eqid 2621 . . . . . 6 (𝑀 LMHom 𝑀) = (𝑀 LMHom 𝑀)
7 eqid 2621 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦)) = (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦))
8 eqid 2621 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))
9 eqid 2621 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
10 eqid 2621 . . . . . 6 (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦)) = (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
116, 7, 8, 9, 10mendval 37231 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩}))
125, 11syl5eq 2667 . . . 4 (𝑀 ∈ V → 𝐴 = ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩}))
1312fveq2d 6152 . . 3 (𝑀 ∈ V → (Base‘𝐴) = (Base‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩})))
144, 13eqtr4d 2658 . 2 (𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘𝐴))
15 base0 15833 . . 3 ∅ = (Base‘∅)
16 reldmlmhm 18944 . . . 4 Rel dom LMHom
1716ovprc1 6637 . . 3 𝑀 ∈ V → (𝑀 LMHom 𝑀) = ∅)
18 fvprc 6142 . . . . 5 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
195, 18syl5eq 2667 . . . 4 𝑀 ∈ V → 𝐴 = ∅)
2019fveq2d 6152 . . 3 𝑀 ∈ V → (Base‘𝐴) = (Base‘∅))
2115, 17, 203eqtr4a 2681 . 2 𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘𝐴))
2214, 21pm2.61i 176 1 (𝑀 LMHom 𝑀) = (Base‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  c0 3891  {csn 4148  {cpr 4150  {ctp 4152  cop 4154   × cxp 5072  ccom 5078  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑓 cof 6848  ndxcnx 15778  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866   LMHom clmhm 18938  MEndocmend 37223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-lmhm 18941  df-mend 37224
This theorem is referenced by:  mendplusgfval  37233  mendmulrfval  37235  mendvscafval  37238  mendring  37240  mendlmod  37241  mendassa  37242
  Copyright terms: Public domain W3C validator