Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendvscafval Structured version   Visualization version   GIF version

Theorem mendvscafval 38077
Description: Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendvscafval.a 𝐴 = (MEndo‘𝑀)
mendvscafval.v · = ( ·𝑠𝑀)
mendvscafval.b 𝐵 = (Base‘𝐴)
mendvscafval.s 𝑆 = (Scalar‘𝑀)
mendvscafval.k 𝐾 = (Base‘𝑆)
mendvscafval.e 𝐸 = (Base‘𝑀)
Assertion
Ref Expression
mendvscafval ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem mendvscafval
StepHypRef Expression
1 mendvscafval.a . . 3 𝐴 = (MEndo‘𝑀)
21fveq2i 6232 . 2 ( ·𝑠𝐴) = ( ·𝑠 ‘(MEndo‘𝑀))
3 mendvscafval.b . . . . . . 7 𝐵 = (Base‘𝐴)
41mendbas 38071 . . . . . . 7 (𝑀 LMHom 𝑀) = (Base‘𝐴)
53, 4eqtr4i 2676 . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
6 eqid 2651 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))
7 eqid 2651 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
8 mendvscafval.s . . . . . 6 𝑆 = (Scalar‘𝑀)
9 mendvscafval.k . . . . . . 7 𝐾 = (Base‘𝑆)
10 eqid 2651 . . . . . . 7 𝐵 = 𝐵
11 mendvscafval.e . . . . . . . . 9 𝐸 = (Base‘𝑀)
1211xpeq1i 5169 . . . . . . . 8 (𝐸 × {𝑥}) = ((Base‘𝑀) × {𝑥})
13 eqid 2651 . . . . . . . 8 𝑦 = 𝑦
14 mendvscafval.v . . . . . . . . 9 · = ( ·𝑠𝑀)
15 ofeq 6941 . . . . . . . . 9 ( · = ( ·𝑠𝑀) → ∘𝑓 · = ∘𝑓 ( ·𝑠𝑀))
1614, 15ax-mp 5 . . . . . . . 8 𝑓 · = ∘𝑓 ( ·𝑠𝑀)
1712, 13, 16oveq123i 6704 . . . . . . 7 ((𝐸 × {𝑥}) ∘𝑓 · 𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦)
189, 10, 17mpt2eq123i 6760 . . . . . 6 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
195, 6, 7, 8, 18mendval 38070 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩}))
2019fveq2d 6233 . . . 4 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩})))
21 fvex 6239 . . . . . . 7 (Base‘𝑆) ∈ V
229, 21eqeltri 2726 . . . . . 6 𝐾 ∈ V
23 fvex 6239 . . . . . . 7 (Base‘𝐴) ∈ V
243, 23eqeltri 2726 . . . . . 6 𝐵 ∈ V
2522, 24mpt2ex 7292 . . . . 5 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) ∈ V
26 eqid 2651 . . . . . 6 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩})
2726algvsca 38069 . . . . 5 ((𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩})))
2825, 27mp1i 13 . . . 4 (𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))⟩})))
2920, 28eqtr4d 2688 . . 3 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)))
30 fvprc 6223 . . . . . 6 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
3130fveq2d 6233 . . . . 5 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘∅))
32 df-vsca 16005 . . . . . 6 ·𝑠 = Slot 6
3332str0 15958 . . . . 5 ∅ = ( ·𝑠 ‘∅)
3431, 33syl6eqr 2703 . . . 4 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ∅)
35 fvprc 6223 . . . . . . . . 9 𝑀 ∈ V → (Scalar‘𝑀) = ∅)
368, 35syl5eq 2697 . . . . . . . 8 𝑀 ∈ V → 𝑆 = ∅)
3736fveq2d 6233 . . . . . . 7 𝑀 ∈ V → (Base‘𝑆) = (Base‘∅))
38 base0 15959 . . . . . . 7 ∅ = (Base‘∅)
3937, 9, 383eqtr4g 2710 . . . . . 6 𝑀 ∈ V → 𝐾 = ∅)
40 mpt2eq12 6757 . . . . . 6 ((𝐾 = ∅ ∧ 𝐵 = 𝐵) → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)))
4139, 10, 40sylancl 695 . . . . 5 𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)))
42 mpt20 6767 . . . . 5 (𝑥 ∈ ∅, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ∅
4341, 42syl6eq 2701 . . . 4 𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)) = ∅)
4434, 43eqtr4d 2688 . . 3 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦)))
4529, 44pm2.61i 176 . 2 ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))
462, 45eqtri 2673 1 ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1523  wcel 2030  Vcvv 3231  cun 3605  c0 3948  {csn 4210  {cpr 4212  {ctp 4214  cop 4216   × cxp 5141  ccom 5147  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑓 cof 6937  6c6 11112  ndxcnx 15901  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992   LMHom clmhm 19067  MEndocmend 38062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-lmhm 19070  df-mend 38063
This theorem is referenced by:  mendvsca  38078
  Copyright terms: Public domain W3C validator