Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem2 Structured version   Visualization version   GIF version

Theorem merco1lem2 1682
 Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1678. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem2 (((𝜑𝜓) → 𝜒) → (((𝜓𝜏) → (𝜑 → ⊥)) → 𝜒))

Proof of Theorem merco1lem2
StepHypRef Expression
1 retbwax2 1681 . . 3 ((((𝜓𝜏) → (𝜑 → ⊥)) → ⊥) → ((𝜒𝜑) → (((𝜓𝜏) → (𝜑 → ⊥)) → ⊥)))
2 merco1 1678 . . 3 (((((𝜓𝜏) → (𝜑 → ⊥)) → ⊥) → ((𝜒𝜑) → (((𝜓𝜏) → (𝜑 → ⊥)) → ⊥))) → ((((𝜒𝜑) → (((𝜓𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑𝜓)))
31, 2ax-mp 5 . 2 ((((𝜒𝜑) → (((𝜓𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑𝜓))
4 merco1 1678 . 2 (((((𝜒𝜑) → (((𝜓𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜒) → (((𝜓𝜏) → (𝜑 → ⊥)) → 𝜒)))
53, 4ax-mp 5 1 (((𝜑𝜓) → 𝜒) → (((𝜓𝜏) → (𝜑 → ⊥)) → 𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ⊥wfal 1528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-tru 1526  df-fal 1529 This theorem is referenced by:  merco1lem3  1683  merco1lem10  1691  merco1lem11  1692  merco1lem18  1699
 Copyright terms: Public domain W3C validator