MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem9 Structured version   Visualization version   GIF version

Theorem merco1lem9 1647
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1635. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem9 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem merco1lem9
StepHypRef Expression
1 merco1lem8 1646 . 2 ((⊥ → 𝜑) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓)))
2 merco1lem8 1646 . 2 (((⊥ → 𝜑) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓)))
31, 2ax-mp 5 1 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-tru 1483  df-fal 1486
This theorem is referenced by:  merco1lem12  1650  merco1lem14  1652  merco1lem17  1655  merco1lem18  1656  retbwax1  1657
  Copyright terms: Public domain W3C validator